This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337766 #23 Nov 21 2021 08:13:57 %S A337766 1,1,2,2,3,3,4,5,6,6,8,9,10,11,13,14,16,17,19,22,24,25,28,31,33,35,39, %T A337766 43,46,48,52,57,60,63,69,75,78,82,88,94,99,104,111,119,124,129,137, %U A337766 147,153,160,169,179,187,194,204,216,224,233,246,259,267,277,292,308,318,329,343,361 %N A337766 Number of addition triangles with apex n where all rows are strongly increasing. %C A337766 An addition triangle has any finite sequence of positive numbers as base; other rows are formed by adding pairs of adjacent numbers. %C A337766 If the bottom row is strongly increasing, then every row is strongly increasing. %C A337766 8 %C A337766 3<5 %C A337766 1<2<3 %H A337766 Seiichi Manyama, <a href="/A337766/b337766.txt">Table of n, a(n) for n = 1..500</a> %e A337766 For n = 5: %e A337766 5 5 %e A337766 1,4 2,3 5 %e A337766 For n = 6: %e A337766 6 6 %e A337766 1,5 2,4 6 %e A337766 For n = 7: %e A337766 7 7 7 %e A337766 1,6 2,5 3,4 7 %e A337766 For n = 8: %e A337766 8 %e A337766 3,5 8 8 8 %e A337766 1,2,3 1,7 2,6 3,5 8 %e A337766 For n = 9: %e A337766 9 %e A337766 3,6 9 9 9 9 %e A337766 1,2,4 1,8 2,7 3,6 4,5 9 %o A337766 (Ruby) %o A337766 def A(n) %o A337766 f_ary = [[n]] %o A337766 cnt = 1 %o A337766 while f_ary.size > 0 %o A337766 b_ary = [] %o A337766 f_ary.each{|i| %o A337766 s = i.size %o A337766 (1..i[0] - 1).each{|j| %o A337766 a = [j] %o A337766 (0..s - 1).each{|k| %o A337766 num = i[k] - a[k] %o A337766 if num > 0 %o A337766 a << num %o A337766 else %o A337766 break %o A337766 end %o A337766 } %o A337766 b_ary << a if a.size == s + 1 && a == a.uniq.sort %o A337766 } %o A337766 } %o A337766 f_ary = b_ary %o A337766 cnt += f_ary.size %o A337766 end %o A337766 cnt %o A337766 end %o A337766 def A337766(n) %o A337766 (1..n).map{|i| A(i)} %o A337766 end %o A337766 p A337766(50) %Y A337766 Equivalent sequences with different restrictions on rows: A062684 (none, except terms are positive), A062896 (not a reversal of a counted row), A337765 (weakly increasing). %Y A337766 Cf. A346523. %K A337766 nonn %O A337766 1,3 %A A337766 _Seiichi Manyama_, Sep 19 2020