This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337775 #35 Oct 25 2020 22:51:06 %S A337775 2,18,250,6174,3660250,1542294,2839714,41154,117793122328750, %T A337775 7978057537338,2898701538750,33734898,29688151506250,21107677374, %U A337775 69834458642125879757481250,3999523458421521342 %N A337775 a(n) is the least natural k which is a multiple of prime(n) such that for some m >= 0, phi(k) = rad(k)^m, where phi(k) = A000010(k) and rad(k) = A007947(k). %C A337775 The number m mentioned above is usually referred to as the order of the corresponding number a(n). The sequence of these orders is in A337776. %C A337775 The algorithm suggested here for the calculation of a(n) starts its work from prime(n). %C A337775 Numbers k such that phi(k) = rad(k)^m with m >= 1 are given in A211413. - _Andrew Howroyd_, Sep 21 2020 %D A337775 J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008. %D A337775 J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 745 ; pp 95; 317-8, Ellipses Paris 2004. %H A337775 J.-M. De Koninck, <a href="https://www.jstor.org/stable/4145084">When the Totient Is the Product of the Squared Prime Divisors: Problem 10966</a>, Amer. Math. Monthly, 111 (2004), p. 536. %e A337775 For n=12 the initial prime is prime(12) = 37 and a(12) = 33734898 because phi(33734898) = 10941048, rad(33734898) = 222 and 222^3 = 10941048 and there is no smaller number satisfying the requirements. The order of a(12) is 3. %t A337775 nn = 16; %t A337775 Sar = Table[0, {nn}]; Sar[[1]] = 2; %t A337775 (*It is a list oh the sequence A337775*) %t A337775 OrdSar = Table[0, {nn}]; OrdSar[[1]] = 0; %t A337775 (*It is a sequence A337776 - the orders of members in sequence A337775*) For[Index = 2, Index <= nn, Index++, %t A337775 InitialPrime = Prime[Index]; %t A337775 InitialInteger = InitialPrime - 1; %t A337775 InitialArray = FactorInteger[InitialInteger]; %t A337775 For[i = 1, i <= Length[InitialArray], i++, %t A337775 CurrentArray = %t A337775 FactorInteger[InitialArray[[-i, 1]] - 1] ~Join~ InitialArray; %t A337775 InitialInterger = %t A337775 Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1, %t A337775 Length[CurrentArray]}]; %t A337775 InitialArray = FactorInteger[InitialInterger]; %t A337775 ]; %t A337775 InitialArray = InitialArray ~Join~ {{InitialPrime, 0}}; %t A337775 Ord = Max[InitialArray[[All, 2]]]; %t A337775 Lint = Product[ %t A337775 Power[InitialArray[[k, 1]], Ord - InitialArray[[k, 2]] + 1], {k, %t A337775 1, Length[InitialArray]}]; %t A337775 radn = Product[InitialArray[[k, 1]], {k, 1, Length[InitialArray]}]; %t A337775 Sar[[Index]] = Lint; %t A337775 OrdSar[[Index]] = Ord; %t A337775 ]; %t A337775 Print["Sar= ", Sar] %t A337775 Print["OrdSar= ", OrdSar] %o A337775 (PARI) rad(n) = factorback(factorint(n)[, 1]); %o A337775 isok(k) = my(phik=eulerphi(k), radk=rad(k), x=logint(phik, radk)); radk^x == phik; %o A337775 a(n) = {my(p=prime(n), k=p); while (!isok(k), k+=p); k;} \\ _Michel Marcus_, Sep 23 2020 %Y A337775 Cf. A000010 (phi), A000040 (prime), A007947 (rad), A023503, A024619, A105261, A211413. %K A337775 nonn %O A337775 1,1 %A A337775 _Vladislav Shubin_, Sep 20 2020