This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337785 #31 Sep 22 2020 03:54:25 %S A337785 1,1,1,2,1,3,1,4,1,5,2,6,1,9,1,9,4,9,3,14,2,14,6,14,5,21,4,19,10,21,8, %T A337785 27,6,29,16,25,12,38,14,33,19,37,22,46,14,47,33,45,22,59,29,59,35,56, %U A337785 40,74,34,68,53,72,47,90,47,88,63,88,64,105,59,108,84,106,75,130,81,125,99,128,103,147 %N A337785 Number of addition triangles whose sum is n (version 1). %C A337785 An addition triangle has any set of positive numbers as base; other rows are formed by adding pairs of adjacent numbers. %C A337785 Reversing the base counts as a different triangle. %H A337785 Seiichi Manyama, <a href="/A337785/b337785.txt">Table of n, a(n) for n = 1..500</a> %e A337785 n | %e A337785 -----+------------------------------------------------ %e A337785 1 | 1 %e A337785 -----+------------------------------------------------ %e A337785 2 | 2 %e A337785 -----+------------------------------------------------ %e A337785 3 | 3 %e A337785 -----+------------------------------------------------ %e A337785 4 | 2 %e A337785 | 4 1,1 %e A337785 -----+------------------------------------------------ %e A337785 5 | 5 %e A337785 -----+------------------------------------------------ %e A337785 6 | 3 3 %e A337785 | 6 1,2 2,1 %e A337785 -----+------------------------------------------------ %e A337785 7 | 7 %e A337785 -----+------------------------------------------------ %e A337785 8 | 4 4 4 %e A337785 | 8 1,3 2,2 3,1 %e A337785 -----+------------------------------------------------ %e A337785 9 | 9 %e A337785 -----+------------------------------------------------ %e A337785 10 | 5 5 5 5 %e A337785 | 10 1,4 2,3 3,2 4,1 %e A337785 -----+------------------------------------------------ %e A337785 11 | 4 %e A337785 | 2,2 %e A337785 | 11 1,1,1 %e A337785 -----+------------------------------------------------ %e A337785 12 | 6 6 6 6 6 %e A337785 | 12 1,5 2,4 3,3 4,2 5,1 %e A337785 -----+------------------------------------------------ %e A337785 13 | 13 %e A337785 -----+------------------------------------------------ %e A337785 14 | 5 5 %e A337785 | 7 7 7 7 7 7 2,3 3,2 %e A337785 | 14 1,6 2,5 3,4 4,3 5,2 6,1 1,1,2 2,1,1 %o A337785 (Ruby) %o A337785 def f(n) %o A337785 ary = [1] %o A337785 (n - 1).times{|i| %o A337785 ary = [0] + ary + [0] %o A337785 ary = (0..i + 1).map{|j| ary[j] + ary[j + 1] + 1} %o A337785 } %o A337785 ary %o A337785 end %o A337785 def A(n) %o A337785 f_ary = (1..n / 2).map{|i| [i]} %o A337785 cnt = 1 %o A337785 s = 1 %o A337785 while f_ary.size > 0 %o A337785 s_ary = f(s + 1) %o A337785 b_ary = [] %o A337785 f_ary.each{|i| %o A337785 (1..i[0] - 1).each{|j| %o A337785 a = [j] %o A337785 (0..s - 1).each{|k| %o A337785 num = i[k] - a[k] %o A337785 if num > 0 %o A337785 a << num %o A337785 else %o A337785 break %o A337785 end %o A337785 } %o A337785 if a.size == s + 1 %o A337785 sum = (0..s).inject(0){|t, m| t + s_ary[m] * a[m]} %o A337785 if sum < n %o A337785 b_ary << a %o A337785 elsif sum == n %o A337785 cnt += 1 %o A337785 end %o A337785 end %o A337785 } %o A337785 } %o A337785 f_ary = b_ary %o A337785 s += 1 %o A337785 end %o A337785 cnt %o A337785 end %o A337785 def A337785(n) %o A337785 (1..n).map{|i| A(i)} %o A337785 end %o A337785 p A337785(50) %Y A337785 Cf. A014430, A062684, A062896, A337765, A337766, see A337787 for version 2. %K A337785 nonn,look %O A337785 1,4 %A A337785 _Seiichi Manyama_, Sep 21 2020