This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337787 #18 Sep 22 2020 03:54:21 %S A337787 1,1,1,2,1,2,1,3,1,3,2,4,1,5,1,6,3,5,2,8,2,8,4,8,3,12,3,11,6,11,5,15, %T A337787 4,16,9,14,7,20,8,18,11,20,12,25,8,25,18,24,12,31,16,32,19,29,21,39, %U A337787 19,36,28,38,25,47,25,46,33,46,34,55,31,56,44,55,39,67,42,66,52,66,53,76,50,81,65,77,57 %N A337787 Number of addition triangles whose sum is n (version 2). %C A337787 An addition triangle has any set of positive numbers as base; other rows are formed by adding pairs of adjacent numbers. %C A337787 Reversing the base does not count as a different triangle. %H A337787 Seiichi Manyama, <a href="/A337787/b337787.txt">Table of n, a(n) for n = 1..500</a> %e A337787 n | %e A337787 -----+------------------------------- %e A337787 1 | 1 %e A337787 -----+------------------------------- %e A337787 2 | 2 %e A337787 -----+------------------------------- %e A337787 3 | 3 %e A337787 -----+------------------------------- %e A337787 4 | 2 %e A337787 | 4 1,1 %e A337787 -----+------------------------------- %e A337787 5 | 5 %e A337787 -----+------------------------------- %e A337787 6 | 3 %e A337787 | 6 1,2 %e A337787 -----+------------------------------- %e A337787 7 | 7 %e A337787 -----+------------------------------- %e A337787 8 | 4 4 %e A337787 | 8 1,3 2,2 %e A337787 -----+------------------------------- %e A337787 9 | 9 %e A337787 -----+------------------------------- %e A337787 10 | 5 5 %e A337787 | 10 1,4 2,3 %e A337787 -----+------------------------------- %e A337787 11 | 4 %e A337787 | 2,2 %e A337787 | 11 1,1,1 %e A337787 -----+------------------------------- %e A337787 12 | 6 6 6 %e A337787 | 12 1,5 2,4 3,3 %e A337787 -----+------------------------------- %e A337787 13 | 13 %e A337787 -----+------------------------------- %e A337787 14 | 5 %e A337787 | 7 7 7 2,3 %e A337787 | 14 1,6 2,5 3,4 1,1,2 %e A337787 -----+------------------------------- %e A337787 15 | 15 %e A337787 -----+------------------------------- %e A337787 16 | 6 %e A337787 | 8 8 8 8 3,3 %e A337787 | 16 1,7 2,6 3,5 4,4 1,2,1 %e A337787 -----+------------------------------- %e A337787 17 | 6 6 %e A337787 | 2,4 3,3 %e A337787 | 17 1,1,3 2,1,2 %e A337787 -----+------------------------------- %e A337787 18 | 9 9 9 9 %e A337787 | 18 1,8 2,7 3,6 4,5 %e A337787 -----+------------------------------- %e A337787 19 | 7 %e A337787 | 3,4 %e A337787 | 19 1,2,2 %o A337787 (Ruby) %o A337787 def f(n) %o A337787 ary = [1] %o A337787 (n - 1).times{|i| %o A337787 ary = [0] + ary + [0] %o A337787 ary = (0..i + 1).map{|j| ary[j] + ary[j + 1] + 1} %o A337787 } %o A337787 ary %o A337787 end %o A337787 def A(n) %o A337787 f_ary = (1..n / 2).map{|i| [i]} %o A337787 cnt = 2 %o A337787 s = 1 %o A337787 while f_ary.size > 0 %o A337787 s_ary = f(s + 1) %o A337787 b_ary = [] %o A337787 f_ary.each{|i| %o A337787 (1..i[0] - 1).each{|j| %o A337787 a = [j] %o A337787 (0..s - 1).each{|k| %o A337787 num = i[k] - a[k] %o A337787 if num > 0 %o A337787 a << num %o A337787 else %o A337787 break %o A337787 end %o A337787 } %o A337787 if a.size == s + 1 %o A337787 sum = (0..s).inject(0){|t, m| t + s_ary[m] * a[m]} %o A337787 if sum < n %o A337787 b_ary << a %o A337787 elsif sum == n %o A337787 cnt += 1 %o A337787 cnt += 1 if a == a.reverse %o A337787 end %o A337787 end %o A337787 } %o A337787 } %o A337787 f_ary = b_ary %o A337787 s += 1 %o A337787 end %o A337787 cnt / 2 %o A337787 end %o A337787 def A337787(n) %o A337787 (1..n).map{|i| A(i)} %o A337787 end %o A337787 p A337787(50) %Y A337787 Cf. A014430, A062684, A062896, see A337785 for version 1. %K A337787 nonn,look %O A337787 1,4 %A A337787 _Seiichi Manyama_, Sep 21 2020