cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337797 Number of partitions of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.

This page as a plain text file.
%I A337797 #7 Feb 16 2025 08:34:00
%S A337797 1,1,2,4,13,45,198,858,3728,16115,69125,292940,1224628,5052396,
%T A337797 20570806,82655098,327881398,1284663878,4973614490,19034194696,
%U A337797 72037124003,269723590850,999517370314,3667158097572,13325691939021,47975192145998
%N A337797 Number of partitions of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.
%H A337797 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PyramidalNumber.html">Pyramidal Number</a>
%H A337797 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A337797 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>
%F A337797 a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.
%e A337797 a(3) = 4 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
%Y A337797 Cf. A006484, A072964, A298269, A337762, A337798, A337799.
%K A337797 nonn
%O A337797 0,3
%A A337797 _Ilya Gutkovskiy_, Sep 22 2020