This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337799 #9 Feb 16 2025 08:34:00 %S A337799 1,1,2,15,2780,94947913,5470124262136760,5979009355803053742719666641, %T A337799 1610158754567753309521653012201612266212334009, %U A337799 1566217729562552701894041200097975651072376485590145959656670312797530 %N A337799 Number of compositions (ordered partitions) of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers. %H A337799 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PyramidalNumber.html">Pyramidal Number</a> %H A337799 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A337799 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %F A337799 a(n) = [x^p(n,n)] 1 / (1 - Sum_{k=1..n} x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number. %e A337799 a(3) = 15 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4], [1, 1, 4, 4], [4, 1, 1, 1, 1, 1, 1], [1, 4, 1, 1, 1, 1, 1], [1, 1, 4, 1, 1, 1, 1], [1, 1, 1, 4, 1, 1, 1], [1, 1, 1, 1, 4, 1, 1], [1, 1, 1, 1, 1, 4, 1], [1, 1, 1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %Y A337799 Cf. A006484, A224677, A337764, A337797, A337798. %K A337799 nonn %O A337799 0,3 %A A337799 _Ilya Gutkovskiy_, Sep 22 2020