This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337804 #33 Oct 23 2020 12:24:17 %S A337804 0,0,0,1,2,1,0,3,4,0,3,5,2,6,3,2,7,8,5,1,9,1,0,9,10,11,7,2,6,4,12,13, %T A337804 14,15,0,8,9,11,16,17,18,19,20,6,5,5,15,21,22,23,24,25,21,3,10,8,1,3, %U A337804 26,27,28,29,7,16,1,4,2,19,30,31,32,33,34,35,30,2,12,11 %N A337804 Lexicographically earliest triangle of nonnegative integers read by rows such that for each pair (x,y) != (0,0), there is at most one pair (n,k) such that T(n,k) = T(n+x,k+y). %C A337804 Each value is determined by placing the least possible nonnegative integer that will abide by the rules of the sequence. %H A337804 Rémy Sigrist, <a href="/A337804/b337804.txt">Table of n, a(n) for n = 1..10011</a> (rows for n = 1..141, flattened) %H A337804 Rémy Sigrist, <a href="/A337804/a337804.png">Colored representation of the first 500 rows</a> (where the hue is function of T(n,k)) %H A337804 Rémy Sigrist, <a href="/A337804/a337804_1.png">Colored scatterplot of (x, y) such that T(n, k) = T(n+x, k+y) and max(n, n+x) <= 500 and (x, y) <> (0, 0)</a> (where the hue is function of T(n, k)) %H A337804 Rémy Sigrist, <a href="/A337804/a337804.gp.txt">PARI program for A337804</a> %e A337804 Triangle begins: %e A337804 0; %e A337804 0, 0; %e A337804 1, 2, 1; %e A337804 0, 3, 4, 0; %e A337804 3, 5, 2, 6, 3; %e A337804 2, 7, 8, 5, 1, 9; %e A337804 ... %o A337804 (PARI) %o A337804 T(n)={my(v=vector(n), S=Set(), L=List()); %o A337804 for(n=1, #v, v[n]=vector(n); for(k=1, n, my(i=1); %o A337804 while(i<=#L, my(P=Set([[n-p[1], k-p[2]] | p<-L[i]])); if(!#setintersect(P,S), S = setunion(S,P); break); i++); %o A337804 if(i>#L, listput(L, [])); %o A337804 L[i] = concat(L[i], [[n,k]]); %o A337804 v[n][k] = i-1 )); v %o A337804 } %o A337804 concat(T(12)) \\ _Andrew Howroyd_, Sep 24 2020 %o A337804 (PARI) See Links section. %Y A337804 Cf. A337226 (linear version). %K A337804 nonn,tabl %O A337804 1,5 %A A337804 _Aidan Clarke_, Sep 22 2020 %E A337804 Terms a(46) and beyond from _Andrew Howroyd_, Sep 24 2020