cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337804 Lexicographically earliest triangle of nonnegative integers read by rows such that for each pair (x,y) != (0,0), there is at most one pair (n,k) such that T(n,k) = T(n+x,k+y).

This page as a plain text file.
%I A337804 #33 Oct 23 2020 12:24:17
%S A337804 0,0,0,1,2,1,0,3,4,0,3,5,2,6,3,2,7,8,5,1,9,1,0,9,10,11,7,2,6,4,12,13,
%T A337804 14,15,0,8,9,11,16,17,18,19,20,6,5,5,15,21,22,23,24,25,21,3,10,8,1,3,
%U A337804 26,27,28,29,7,16,1,4,2,19,30,31,32,33,34,35,30,2,12,11
%N A337804 Lexicographically earliest triangle of nonnegative integers read by rows such that for each pair (x,y) != (0,0), there is at most one pair (n,k) such that T(n,k) = T(n+x,k+y).
%C A337804 Each value is determined by placing the least possible nonnegative integer that will abide by the rules of the sequence.
%H A337804 Rémy Sigrist, <a href="/A337804/b337804.txt">Table of n, a(n) for n = 1..10011</a> (rows for n = 1..141, flattened)
%H A337804 Rémy Sigrist, <a href="/A337804/a337804.png">Colored representation of the first 500 rows</a> (where the hue is function of T(n,k))
%H A337804 Rémy Sigrist, <a href="/A337804/a337804_1.png">Colored scatterplot of (x, y) such that T(n, k) = T(n+x, k+y) and max(n, n+x) <= 500 and (x, y) <> (0, 0)</a> (where the hue is function of T(n, k))
%H A337804 Rémy Sigrist, <a href="/A337804/a337804.gp.txt">PARI program for A337804</a>
%e A337804 Triangle begins:
%e A337804 0;
%e A337804 0, 0;
%e A337804 1, 2, 1;
%e A337804 0, 3, 4, 0;
%e A337804 3, 5, 2, 6, 3;
%e A337804 2, 7, 8, 5, 1, 9;
%e A337804 ...
%o A337804 (PARI)
%o A337804 T(n)={my(v=vector(n), S=Set(), L=List());
%o A337804   for(n=1, #v, v[n]=vector(n); for(k=1, n, my(i=1);
%o A337804     while(i<=#L, my(P=Set([[n-p[1], k-p[2]] | p<-L[i]])); if(!#setintersect(P,S), S = setunion(S,P); break); i++);
%o A337804     if(i>#L, listput(L, []));
%o A337804     L[i] = concat(L[i], [[n,k]]);
%o A337804     v[n][k] = i-1 )); v
%o A337804 }
%o A337804 concat(T(12)) \\ _Andrew Howroyd_, Sep 24 2020
%o A337804 (PARI) See Links section.
%Y A337804 Cf. A337226 (linear version).
%K A337804 nonn,tabl
%O A337804 1,5
%A A337804 _Aidan Clarke_, Sep 22 2020
%E A337804 Terms a(46) and beyond from _Andrew Howroyd_, Sep 24 2020