This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337820 #20 Sep 08 2022 08:46:25 %S A337820 1,1,1,1,1,1,1,3,1,1,1,2,1,1,1,1,5,1,3,1,1,1,3,1,3,1,1,1,1,7,1,1,1,3, %T A337820 1,1,1,4,1,3,1,3,1,1,1,1,9,1,3,1,5,1,3,1,1,1,5,1,5,1,3,1,3,1,1,1,1,11, %U A337820 1,3,1,3,1,1,1,3,1,1,1,6,1,1,1,5,1,3,1,3,1,1,1,1,13,1,3,1,3 %N A337820 Array read by antidiagonals: T(n,k) (n >= 1, k >= 0) is the ratio (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)). %C A337820 Array read by antidiagonals: T(n,k) (n >=1, k >= 0) is part of n of the form (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)). %F A337820 T(n, 2*k) = 1; 1 <= T(n, 2*k+1) <= n. %e A337820 The initial rows of the array are: %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 1, 3, 7, 5, 7, 1, 3, 9, 1, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 5, 3, 3, 5, 3, 5, 3, 9, 5, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 1, 3, 3, 5, 3, 1, 3, 9, 1, ... %e A337820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A337820 1, 1, 3, 3, 5, 3, 7, 5, 7, 5, 3, 9, 5, ... %e A337820 The initial antidiagonals are: %e A337820 1, %e A337820 1, 1, %e A337820 1, 1, 1, %e A337820 1, 3, 1, 1, %e A337820 1, 2, 1, 1, 1, %e A337820 1, 5, 1, 3, 1, 1, %e A337820 1, 3, 1, 3, 1, 1, 1, %e A337820 1, 7, 1, 1, 1, 3, 1, 1, %e A337820 1, 4, 1, 3, 1, 3, 1, 1, 1, %e A337820 1, 9, 1, 3, 1, 5, 1, 3, 1, 1, %e A337820 1, 5, 1, 5, 1, 3, 1, 3, 1, 1, 1, %e A337820 1, 11, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, %e A337820 1, 6, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, %e A337820 1, 13, 1, 3, 1, 3, 1, 7, 1, 5, 1, 3, 1, 1, %e A337820 ... %o A337820 (Magma) /* As triangle */ [[#[m: m in [0..n-k-1] | m^k mod (n-k) eq m]/ %o A337820 #[m: m in [0..n-k-1] | -m^k mod (n-k) eq m]: k in [0..n-1]]: n in [1..13]]; %Y A337820 Columns 0-2: A000012, A026741, A000012. %Y A337820 Cf. A000010, A000012, A000027, A002322, A182816, A333570, A334006, A334597, A336664. %K A337820 nonn,tabl %O A337820 1,8 %A A337820 _Juri-Stepan Gerasimov_, Sep 23 2020