A337821 For n >= 0, a(4n+1) = 0, a(4n+3) = a(2n+1) + 1, a(2n+2) = a(n+1).
0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 0, 4, 5, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 3, 4, 1
Offset: 1
Examples
Start of table showing the interleaving with ruler sequence, A007814: n a(n) A007814 a(n/2) ((n+1)/2) 1 0 0 2 0 0 3 1 1 4 0 0 5 0 0 6 1 1 7 2 2 8 0 0 9 0 0 10 0 0 11 1 1 12 1 1 13 0 0 14 2 2 15 3 3 16 0 0 17 0 0 18 0 0 19 1 1 20 0 0 21 0 0 22 1 1 23 2 2 24 1 1
Crossrefs
Programs
-
Mathematica
a[n_] := IntegerExponent[(n/2^IntegerExponent[n, 2] + 1)/2, 2]; Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
-
PARI
a(n) = valuation(n>>valuation(n,2)+1, 2) - 1; \\ Kevin Ryde, Apr 06 2024
Comments