cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337829 Odd integers k such that 5^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).

This page as a plain text file.
%I A337829 #24 Oct 13 2020 15:43:20
%S A337829 3,7,43,53,127,163,487,677,883,2647,8527,8803,14407,18523,26407,32887,
%T A337829 35323,39367,71443,105967,184087,184843,230203,265483,319327,388963,
%U A337829 425083,543607,554527,651043,688087,690607,698923,796447,887923,924043,1001323
%N A337829 Odd integers k such that 5^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).
%C A337829 The first 564 terms are prime.
%H A337829 Chai Wah Wu, <a href="/A337829/b337829.txt">Table of n, a(n) for n = 1..564</a>
%t A337829 Select[Range[3, 10^6, 2], PowerMod[5, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* _Amiram Eldar_, Sep 24 2020 *)
%Y A337829 Cf. A337818.
%K A337829 nonn
%O A337829 1,1
%A A337829 _Benoit Cloitre_, Sep 24 2020