cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337841 Triangle read by rows, T(n, k) = binomial(2*n-1, 2*k-1) * binomial(2*n-2*k, n-k) * (k+1) / binomial(n+k+1, n-k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 6, 10, 4, 0, 14, 30, 21, 5, 0, 36, 90, 84, 36, 6, 0, 99, 275, 308, 180, 55, 7, 0, 286, 858, 1092, 780, 330, 78, 8, 0, 858, 2730, 3822, 3150, 1650, 546, 105, 9, 0, 2652, 8840, 13328, 12240, 7480, 3094, 840, 136, 10, 0, 8398, 29070, 46512, 46512, 31977, 15561, 5320, 1224, 171, 11
Offset: 0

Views

Author

Werner Schulte, Oct 30 2020

Keywords

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
  n\k:  0     1      2      3      4      5      6     7     8    9  10
=======================================================================
   0 :  1
   1 :  0     2
   2 :  0     3      3
   3 :  0     6     10      4
   4 :  0    14     30     21      5
   5 :  0    36     90     84     36      6
   6 :  0    99    275    308    180     55      7
   7 :  0   286    858   1092    780    330     78     8
   8 :  0   858   2730   3822   3150   1650    546   105     9
   9 :  0  2652   8840  13328  12240   7480   3094   840   136   10
  10 :  0  8398  29070  46512  46512  31977  15561  5320  1224  171  11
etc.
		

Crossrefs

Cf. Row sums: A000984, main diagonal: A000027, 1st subdiagonal: A014105, 2nd subdiagonal: A055112, column 0: A000007, column 1: A007054.

Programs

  • Maple
    T := proc(n, k) option remember; if k = n then n+1 else
    T(n-1, k)*(2*n-2)*(2*n-1)/((n-1)*(n+2)-(k-1)*(k+2)) fi end:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Nov 02 2020

Formula

T(n,k) = binomial(2*n-1,n-k) * k * (2*k+1) * (2*k+2) / ((n+k)*(n+k+1)) for 1 <= k <= n, and T(n,0) = 0^n for n >= 0.
T(n,n) = n+1 for n >= 0; T(n,n-1) = (n-1) * (2*n-1) for n > 0; T(n,n-2) = (n-1) * (n-2) * (2*n-3) for n > 1.
T(n,k) = T(n-1,k) * (2*n-2) * (2*n-1) / ((n-1) * (n+2) - (k-1) * (k+2)) for 0 <= k < n with initial values T(n,n) = n+1 for n >= 0.
Row sums are A000984(n) for n >= 0.
Alternating row sums are 0 for n > 1.
Sum_{k=0..n} (-1)^k * T(n,k) * (k*(k+1)/2)^m = 0 for 0 <= m <= n-2.
T(n,1) = 12 * binomial(2*n-1,n-1)/((n+1)*(n+2)) = A007054(n) for n > 0.
T(n,k) = T(n,1)*(k*(k+1)*(2*k+1)/6)*binomial(n-1,k-1)/binomial(n+1+k,k-1) for 1 <= k <= n.
From Werner Schulte, Nov 09 2020: (Start)
T(n,k) = A128899(n,k) * (k+1) * (2*k+1) / (n+k+1) for 0 <= k <= n.
T(n,0) + Sum_{k=1..n} T(n,k) / (k*(k+1)) = A000108(n) for n >= 0. (End)