cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337861 Numbers that can be written as the sum of two Moran numbers (see A001101).

This page as a plain text file.
%I A337861 #9 Sep 08 2022 08:46:25
%S A337861 36,39,42,45,48,54,60,63,66,69,72,81,84,87,90,102,105,108,111,126,129,
%T A337861 132,135,138,141,144,147,151,153,154,156,159,160,162,168,170,171,173,
%U A337861 174,175,177,178,179,180,183,189,192,194,195,196,197,198,201,208,211
%N A337861 Numbers that can be written as the sum of two Moran numbers (see A001101).
%e A337861 36 = 18 + 18 = A001101(1) + A001101(1), so 36 is a term.
%e A337861 39 = 18 + 21 = A001101(1) + A001101(2), so 39 is a term.
%e A337861 87 = 42 + 45 = A001101(4) + A001101(5), so 87 is a term.
%t A337861 m = 211; morans = Select[Range[m], PrimeQ[#/Plus @@ IntegerDigits[#]] &]; Select[Range[m], Length[IntegerPartitions[#, {2}, morans]] > 0 &] (* _Amiram Eldar_, Oct 21 2020 *)
%o A337861 (Magma) moran:=func<n|n mod &+Intseq(n) eq 0  and IsPrime( n div &+Intseq(n))>; [n:n in [1..220] | #RestrictedPartitions(n,2,{k:k in [1..n-1] | moran(k)}) ne 0];
%Y A337861 Cf. A001101, A005349, A337853.
%K A337861 nonn,base
%O A337861 1,1
%A A337861 _Marius A. Burtea_, Oct 21 2020