A337869 The number of random walks on the simple square lattice that return to the origin (0,0) after 2n steps and do not pass through (0,0) or (1,0) at intermediate steps.
3, 13, 106, 1073, 12142, 147090, 1865772, 24463905, 328887346, 4508608610, 62781858592, 885513974674, 12624162072740, 181611275997040, 2633023723495116, 38431604042148681, 564258290166041298, 8327627696761062714, 123471550301117915892
Offset: 1
Examples
Example: a(1)=3 counts the walks UD, DU, LR (but not RL which would pass (1,0)) of 2 steps that return to the origin.
Links
- R. J. Mathar, Random Walk on the Square Lattice: Return to (0,0) with or without passing (1,0) (Sep 2020)
Programs
-
Maple
g002894 := hypergeom([1/2,1/2],[1],16*x^2) ; g060150 := x*hypergeom([1,3/2,3/2],[2,2],16*x^2) ; 1-1/2/(g002894+g060150)-1/2/(g002894-g060150) ; taylor(%,x=0,40); gfun[seriestolist](%) ; # includes zeros of odd steps
Comments