This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337877 #15 Aug 30 2024 02:53:17 %S A337877 8,12,20,27,28,44,45,52,63,68,76,92,99,116,117,124,125,148,153,164, %T A337877 171,172,175,188,207,212,236,244,261,268,275,279,284,292,316,325,332, %U A337877 333,343,356,369,387,388,404,412,423,425,428,436,452,475,477,508,524,531,539,548,549,556,575,596,603 %N A337877 Numbers of the form p^2*q where p and q are primes and p <= q. %H A337877 Robert Israel, <a href="/A337877/b337877.txt">Table of n, a(n) for n = 1..10000</a> %e A337877 a(3) = 20 is a term because 20=2^2*5 with 2 <= 5. %p A337877 N:= 3000: # for terms <= N %p A337877 P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P): %p A337877 R:= NULL: %p A337877 for i from 1 to nP do %p A337877 p2:= P[i]^2; %p A337877 for j from i to nP do %p A337877 x:= p2*P[j]; %p A337877 if x > N then break fi; %p A337877 R:= R, x %p A337877 od od: %p A337877 sort([R]); %o A337877 (Python) %o A337877 from sympy import primepi, primerange, integer_nthroot %o A337877 def A337877(n): %o A337877 def f(x): return int(n+x-sum(primepi(x//k**2)-a for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)))) %o A337877 def bisection(f,kmin=0,kmax=1): %o A337877 while f(kmax) > kmax: kmax <<= 1 %o A337877 while kmax-kmin > 1: %o A337877 kmid = kmax+kmin>>1 %o A337877 if f(kmid) <= kmid: %o A337877 kmax = kmid %o A337877 else: %o A337877 kmin = kmid %o A337877 return kmax %o A337877 return bisection(f) # _Chai Wah Wu_, Aug 29 2024 %Y A337877 Contained in A337806. %K A337877 nonn %O A337877 1,1 %A A337877 _Robert Israel_, Sep 27 2020