This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337889 #10 Sep 29 2020 10:05:39 %S A337889 0,0,0,0,0,0,0,1,40927,0,0,20,731279799,314824333015938998688,0,0,120, %T A337889 732272925320,38491882659300767730994725249684096, %U A337889 38343035259947576596859560773963975000551460473665493534170658111488,0 %N A337889 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors. %C A337889 Each member of a chiral pair is a reflection, but not a rotation, of the other. Each face is a square bounded by four edges. For n=2, the figure is a square with one face. For n=3, the figure is a cube with 6 faces. For n=4, the figure is a tesseract with 24 faces. The number of faces is 2^(n-2)*C(n,2). %C A337889 Also the number of chiral pairs of colorings of peaks of an n-dimensional orthoplex. A peak is an (n-3)-dimensional simplex. %C A337889 The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1). %H A337889 K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180. %F A337889 T(n,k) = A337887(n,k) - A337888(n,k) = (A337887(n,k) - A337890(n,k)) / 2 = A337888(n,k) - A337890(n,k). %e A337889 Array begins with T(2,1): %e A337889 0 0 0 0 0 0 ... %e A337889 0 0 1 20 120 455 ... %e A337889 0 40927 731279799 732272925320 155180061396500 12338466190481025 ... %t A337889 m=2; (* dimension of color element, here a square face *) %t A337889 Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]]; %t A337889 FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); %t A337889 CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],1,-1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]); %t A337889 PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]); %t A337889 pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) %t A337889 row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)] %t A337889 array[n_, k_] := row[n] /. b -> k %t A337889 Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten %Y A337889 Cf. A337887 (oriented), A337888 (unoriented), A337890 (achiral). %Y A337889 Other elements: A325014 (vertices), A337409 (edges). %Y A337889 Other polytopes: A337885 (simplex), A337893 (orthoplex). %Y A337889 Rows 2-4 are A000004, A093566(n+1), A331356. %K A337889 tabl,nonn %O A337889 2,9 %A A337889 _Robert A. Russell_, Sep 28 2020