This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337896 #6 Mar 09 2024 11:15:02 %S A337896 0,1,66,920,6350,29505,106036,317856,832140,1961025,4248310,8590296, %T A337896 16398746,29814785,51983400,87399040,142333656,225359361,347978730, %U A337896 525376600,777308070,1129138241,1613050076,2269437600 %N A337896 Number of chiral pairs of colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors. %C A337896 Each member of a chiral pair is a reflection, but not a rotation, of the other. %H A337896 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1). %F A337896 a(n) = (n-1) * n^2 * (n+1) * (8 - 5*n^2 + n^4) / 48. %F A337896 a(n) = 1*C(n,2) + 63*C(n,3) + 662*C(n,4) + 2400*C(n,5) + 3900*C(n,6) + 2940*C(n,7) + 840*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. %F A337896 G.f.: x^2 * (1+x) * (1+56*x+306*x^2+56*x^3+x^4) / (1-x)^9. %F A337896 a(n) = A000543(n) - A128766(n) = (A000543(n) - A337897(n)) / 2 = A128766(n) - A337897(n). %e A337896 For a(2)=1, centering the octahedron (cube) at the origin and aligning the diagonals (edges) with the axes, color the faces (vertices) in the octants ---, --+, -++, and +++ with one color and the other 4 elements with the other color. %t A337896 Table[(n-1)n^2(n+1)(8-5n^2+n^4)/48, {n,30}] %Y A337896 Cf. A000543 (oriented), A128766(unoriented), A337897 (achiral). %Y A337896 Other elements: A337406 (edges), A093566(n+1) (cube faces, octahedron vertices). %Y A337896 Other polyhedra: A000332 (simplex), A093566(n+1) (cube/octahedron). %Y A337896 Row 3 of A325014 (chiral pairs of colorings of orthoplex facets or orthotope vertices). %Y A337896 Row 3 of A337893 (chiral pairs of colorings of orthoplex faces or orthotope peaks). %K A337896 nonn %O A337896 1,3 %A A337896 _Robert A. Russell_, Sep 28 2020