This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337899 #6 Mar 09 2024 11:31:39 %S A337899 0,1,21,140,575,1785,4606,10416,21330,40425,71995,121836,197561, %T A337899 308945,468300,690880,995316,1404081,1943985,2646700,3549315,4694921, %U A337899 6133226,7921200,10123750,12814425,16076151,20001996 %N A337899 Number of chiral pairs of colorings of the edges of a regular tetrahedron using n or fewer colors. %C A337899 Each member of a chiral pair is a reflection, but not a rotation, of the other. A regular tetrahedron has 6 edges and Schläfli symbol {3,3}. %H A337899 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1). %F A337899 a(n) = (n-1) * n^2 * (n+1) * (n^2-2) / 24. %F A337899 a(n) = 1*C(n,2) + 18*C(n,3) + 62*C(n,4) + 75*C(n,5) + 30*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. %F A337899 a(n) = A046023(n) - A063842(n-1) = (A046023(n) - A037270(n)) / 2 = A063842(n-1) - A037270(n). %F A337899 G.f.: x^2 * (1+x) * (1+13x+x^2)/(1-x)^7. %e A337899 For a(2)=1, two opposite edges and one edge connecting those have one color; the other three edges have the other color. %t A337899 Table[(n-1)n^2(n+1)(n^2-2)/24, {n, 40}] %Y A337899 Cf. A046023(unoriented), A063842(n-1) (oriented), A037270 (chiral). %Y A337899 Other elements: A000332 (vertices and faces). %Y A337899 Other polyhedra: A337406 (cube/octahedron). %Y A337899 Row 3 of A327085 (chiral pairs of colorings of edges or ridges of an n-simplex). %K A337899 nonn %O A337899 1,3 %A A337899 _Robert A. Russell_, Sep 28 2020