cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337900 The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).

This page as a plain text file.
%I A337900 #16 Dec 21 2024 22:29:27
%S A337900 1,16,225,3136,44100,627264,9018009,130873600,1914762564,28210561600,
%T A337900 418151049316,6230734868736,93271169290000,1401915345465600,
%U A337900 21147754404155625,320042195924198400,4857445984927644900,73916947787011560000,1127482124965160372100
%N A337900 The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).
%H A337900 R. J. Mathar, <a href="/A337869/a337869.pdf">Random Walk on the Square Lattice: Return to (0,0) with or without passing (1,0)</a> (Sep 2020)
%F A337900 a(n) = [A001791(n)]^2.
%F A337900 G.f.: x*4F3(3/2, 3/2, 2, 2; 1, 3, 3; 16*x).
%F A337900 D-finite with recurrence (n-1)^2*(n+1)^2*a(n) - 4*n^2*(2*n-1)^2*a(n-1) = 0.
%F A337900 a(n) = (2n)!*[x^(2n)] BesselI(0, 2x)*BesselI(2, 2x). - _Peter Luschny_, Dec 05 2024
%e A337900 a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
%p A337900 egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40):
%p A337900 seq((2*n)!*coeff(ser, x, 2*n), n = 1..19);  # _Peter Luschny_, Dec 05 2024
%Y A337900 Cf. A002894 (at (0,0)), A060150 (at (1,0)), A135389 (at (1,1)), A337901 (at (3,0)), A337902 (at (2,1)).
%Y A337900 Cf. A001791.
%K A337900 nonn,easy,walk
%O A337900 1,2
%A A337900 _R. J. Mathar_, Sep 29 2020