cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337909 Distinct terms of A080079 in the order in which they appear.

This page as a plain text file.
%I A337909 #28 Oct 06 2020 02:34:42
%S A337909 1,2,4,3,8,7,6,5,16,15,14,13,12,11,10,9,32,31,30,29,28,27,26,25,24,23,
%T A337909 22,21,20,19,18,17,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,
%U A337909 47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,128
%N A337909 Distinct terms of A080079 in the order in which they appear.
%C A337909 This sequence is a permutation of the positive integers.
%C A337909 The cardinality of {2^k, ..., (2^k - 0^k)/2 + 1} is A011782(k).
%H A337909 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A337909 a(1) = 1 and a(n) = A080079(n - 1 + 2^floor(log_2(n - 1))) if n > 1.
%F A337909 a(n) = A080079(A004761(n+1)).
%F A337909 From _Kevin Ryde_, Sep 29 2020: (Start)
%F A337909 a(n) = 3*A053644(n-1) - (n-1), if n > 1.
%F A337909 a(n) = A054429(n-1) + 1, if n > 1.
%F A337909 a(n) = A280510(n) - n + 1, if n > 1. (End)
%e A337909 (2^0, ..., (2^0 - 0^0)/2 + 1) = (1),
%e A337909 (2^1, ..., (2^1 - 0^1)/2 + 1) = (2),
%e A337909 (2^2, ..., (2^2 - 0^2)/2 + 1) = (4, 3),
%e A337909 (2^3, ..., (2^3 - 0^3)/2 + 1) = (8, 7, 6, 5)...
%t A337909 {1}~Join~Array[3*2^(IntegerLength[# - 1, 2] - 1) - # + 1 &, 64, 2] (* _Michael De Vlieger_, Oct 05 2020 *)
%o A337909 (PARI) a(n) = if(n--, 3<<logint(n,2) - n, 1); \\ _Kevin Ryde_, Sep 29 2020
%Y A337909 Cf. A004761, A011782, A053644, A054429, A080079, A280510.
%K A337909 nonn
%O A337909 1,2
%A A337909 _Lorenzo Sauras Altuzarra_, Sep 29 2020