This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337922 #16 Jan 05 2025 19:51:41 %S A337922 1176470588235294,2352941176470588,3529411764705882,4705882352941176, %T A337922 5882352941176470,11764705882352941176470588235294, %U A337922 23529411764705882352941176470588,35294117647058823529411764705882,47058823529411764705882352941176,58823529411764705882352941176470 %N A337922 Numbers k such that when the first digit of k is shifted to the end the result is 3*k/2. %C A337922 The problem of finding the least number in this sequence was suggested by the Polish-British mathematician and historian Jacob Bronowski (1908-1974). %C A337922 Anderson (1988) credited the problem to the British mathematician John Edensor Littlewood (1885-1977). The solution to the problem was given in 1955 by the British mathematician Dudley Ernest Littlewood (1903-1979), a student of J. E. Littlewood (but they were not related). %D A337922 Jacob Bronowski, New Statesman and Nation, Vol. 39, Dec. 24, 1949, p. 761. %D A337922 Dan Pedoe, The Gentle Art of Mathematics, Macmillan, 1960, p. 11. %H A337922 Amiram Eldar, <a href="/A337922/b337922.txt">Table of n, a(n) for n = 1..310</a> %H A337922 Oliver D. Anderson, <a href="https://doi.org/10.1093/teamat/7.3.144">On Littlewood's Little Puzzle</a>, Teaching Mathematics and its Applications: An International Journal of the IMA, Vol. 7, No. 3 (1988), pp. 144-146. %H A337922 J. H. Clarke, <a href="https://www.jstor.org/stable/3608209">Note 2298. A Digital Puzzle</a>, The Mathematical Gazette, Vol. 36, No. 318 (1952), p. 276. %H A337922 Keith Devlin, <a href="https://doi.org/10.1007/978-1-349-07936-0">Micro-Maths, Mathematical problems and theorems to consider and solve on a computer</a>, Macmillan, 1984, pp. 38-39. %H A337922 D. E. Littlewood, <a href="https://www.jstor.org/stable/3611102">Note 2494. On Note 2298: a digital puzzle</a>, The Mathematical Gazette, Vol. 39, No. 327 (1955), p. 58. %H A337922 Joseph S. Madachy, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/6-6/madachy.pdf">Recreational Mathematics</a>, The Fibonacci Quarterly, Vo. 6, No. 6 (1968), pp. 385-398. See page 389. %H A337922 Math Stackexchange, <a href="https://math.stackexchange.com/questions/1301639/finding-the-dr-bronowskis-number">Finding the Dr. Bronowski's number</a>, 2015. %H A337922 Sidney Penner, <a href="http://www.jstor.org/stable/2310848">Problem E 1530</a>, Elementary Problems and Solutions, The American Mathematical Monthly, Vol. 69, No. 7 (1962), p. 667; J. W. Ellis and others, <a href="http://www.jstor.org/stable/2311879">Placing the First Digit Last, Solution to Problem E 1530</a>, ibid., Vol. 70, No. 4 (1963), pp. 441-442. %H A337922 D. G. Rogers, <a href="http://www.jstor.org/stable/27821833">Jacob Bronowski (1908-1974) The Mathematical Gazette and retrodigitisation</a>, The Mathematical Gazette, Vol. 92, No. 525 (2008), pp. 476-479; <a href="http://maths.mq.edu.au/wp-content/uploads/2015/03/MG2008JB.pdf">alternative link</a>. %H A337922 Wikipedia, <a href="https://en.wikipedia.org/wiki/Transposable_integer">Transposable integer</a>. %F A337922 The decimal digits of the first 5 terms are the periodic parts of the decimal expansions of 2/17, 4/17, 6/17, 8/17 and 10/17. The next terms are all the concatenations of each of these terms with itself an integral number of times (Anderson, 1988). %e A337922 1176470588235294 is a term since 1764705882352941 = 3*1176470588235294/2. %t A337922 concat[n_, m_] := NestList[FromDigits[Join[{#}, IntegerDigits[n]]] &, n, m]; s = Range[2, 10, 2]*(10^16 - 1)/17; Union @ Flatten[concat[#, 2] & /@ s] %Y A337922 Cf. A061242, A166320, A258663. %K A337922 nonn,base %O A337922 1,1 %A A337922 _Amiram Eldar_, Jan 29 2021