This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337923 #24 Jun 30 2025 22:49:38 %S A337923 0,0,1,0,0,3,0,0,1,0,0,4,0,0,1,0,0,3,0,0,1,0,0,5,0,0,1,0,0,3,0,0,1,0, %T A337923 0,4,0,0,1,0,0,3,0,0,1,0,0,6,0,0,1,0,0,3,0,0,1,0,0,4,0,0,1,0,0,3,0,0, %U A337923 1,0,0,5,0,0,1,0,0,3,0,0,1,0,0,4,0,0,1 %N A337923 a(n) is the exponent of the highest power of 2 dividing the n-th Fibonacci number. %H A337923 Amiram Eldar, <a href="/A337923/b337923.txt">Table of n, a(n) for n = 1..10000</a> %H A337923 Tamás Lengyel, <a href="https://www.fq.math.ca/Scanned/33-3/lengyel.pdf">The order of the Fibonacci and Lucas numbers</a>, The Fibonacci Quarterly, Vol. 33, No. 3 (1995), pp. 234-239. %F A337923 a(n) = A007814(A000045(n)). %F A337923 The following 4 formulas completely specify the sequence (Lengyel, 1995): %F A337923 1. a(n) = 0 if n == 1 (mod 3) or n == 2 (mod 3). %F A337923 2. a(n) = 1 if n == 3 (mod 6). %F A337923 3. a(n) = 3 if n == 6 (mod 12). %F A337923 4. a(n) = A007814(n) + 2 if n == 0 (mod 12). %F A337923 a(A001651(n)) = 0. %F A337923 a(A016945(n)) = 1. %F A337923 a(A017593(n)) = 3. %F A337923 a(A073762(n)) = 4. %F A337923 The image of this function is A184985, i.e., all the nonnegative integers excluding 2. %F A337923 Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 5/6. %F A337923 a(3*n) = A090740(n), a(3*n+1) = a(3*n+2) = 0. - _Joerg Arndt_, Mar 01 2023 %e A337923 a(1) = 0 since Fibonacci(1) = 1 is odd. %e A337923 a(6) = 3 since Fibonacci(6) = 8 = 2^3. %e A337923 a(12) = 4 since Fibonacci(12) = 144 = 2^4 * 3^2. %t A337923 a[n_] := IntegerExponent[Fibonacci[n], 2]; Array[a, 100] %o A337923 (Python) %o A337923 def A337923(n): return int(not n%3)+(int(not n%6)<<1) if n%12 else 2+(~n&n-1).bit_length() # _Chai Wah Wu_, Jul 10 2022 %Y A337923 Cf. A000045, A007814, A248174. %Y A337923 Cf. A001651, A016945, A017593, A073762, A184985. %Y A337923 Cf. A090740 (sequence without zeros). %K A337923 nonn %O A337923 1,6 %A A337923 _Amiram Eldar_, Jan 29 2021