A337942 Table read by antidiagonals: T(n, k) is the least positive m such that (m*n) mod k = (m*k) mod n, with n > 0 and k > 0.
1, 2, 2, 3, 1, 3, 4, 5, 5, 4, 5, 2, 1, 2, 5, 6, 3, 2, 2, 3, 6, 7, 3, 2, 1, 2, 3, 7, 8, 11, 2, 7, 7, 2, 11, 8, 9, 4, 17, 5, 1, 5, 17, 4, 9, 10, 5, 11, 13, 3, 3, 13, 11, 5, 10, 11, 5, 3, 2, 3, 1, 3, 2, 3, 5, 11, 12, 17, 7, 3, 28, 10, 10, 28, 3, 7, 17, 12
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+--------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 2| 2 1 5 2 3 3 11 4 5 5 3| 3 5 1 2 2 2 17 11 3 7 4| 4 2 2 1 7 5 13 2 3 3 5| 5 3 2 7 1 3 3 28 13 2 6| 6 3 2 5 3 1 10 2 5 2 7| 7 11 17 13 3 10 1 4 4 25 8| 8 4 11 2 28 2 4 1 13 7 9| 9 5 3 3 13 5 4 13 1 5 10| 10 5 7 3 2 2 25 7 5 1
Links
Crossrefs
Cf. A123684.
Programs
-
PARI
T(n,k) = for (m=1, oo, if ((m*n)%k==(m*k)%n, return (m)))
Formula
T(n, k) = T(k, n) <= k*n.
T(n, n) = 1.
T(n, 1) = n.
T(n, n^2) = n.
T(n, n^3) = n^2.
T(n, n^k) = n^(k-1) for any k > 0.
T(n, n+1) = A123684(n+1) for any n > 2.