A337946 a(1)=1; thereafter, a(n) is the smallest number such that the addition and multiplication tables for (a(1),...,a(n)) together contain n*(n+1) different entries (the maximum possible).
1, 3, 7, 12, 22, 30, 47, 61, 85, 113, 126, 177, 193, 246, 279, 321, 341, 428, 499, 571, 616, 686, 754, 854, 975, 1052, 1150, 1317, 1376, 1457, 1513, 1664, 1761, 1961, 2307, 2434, 2591, 2795, 2843, 3057, 3226, 3405, 3508, 3776, 3930, 4023, 4196, 4575, 4731
Offset: 1
Keywords
Examples
The addition table of a(k) for k=1..5: + | 1 3 7 12 22 ---+------------- 1 | 2 4 8 13 23 3 | 6 10 15 25 7 | 14 19 29 12 | 24 34 22 | 44 The multiplication table of a(k) for k=1..5: * | 1 3 7 12 22 ---+--------------- 1 | 1 3 7 12 22 3 | 9 21 36 66 7 | 49 84 154 12 | 144 264 22 | 484 These two tables contain the 5*(5+1) = 30 values {1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 21, 22, 23, 24, 25, 29, 34, 36, 44, 49, 66, 84, 144, 154, 264, 484}.
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
- Peter Kagey, Haskell program
Programs
-
Mathematica
j={k=1};Do[While[l=Join[j,{++k}];g=Union[Sort/@Tuples[l,{2}]];p=Times@@#&/@g;s=Total/@g;!SameQ@@Flatten[{Length@Union@Flatten@{p,s},Length@l(Length@l+1)}]];j=Join[j,{k}];k=Last@j,48];j (* Giorgos Kalogeropoulos, Nov 16 2021 *)