This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337954 #13 Mar 09 2024 12:13:06 %S A337954 0,94,97974,10700090,390081800,7280687610,86121007714,730895668104, %T A337954 4816861200630,26010740238450,119563513291420,481192778757834, %U A337954 1732132086737234,5669991002636870,17101193825828700,48029634770843680 %N A337954 Number of chiral pairs of colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract. %C A337954 Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. %H A337954 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1). %F A337954 a(n) = (n-1) * n^2 * (n+1) * (n^12 + n^10 - 11*n^8 + n^6 + 44 n^4 - 4 n^2 - 48) / 384. %F A337954 a(n) = 94*C(n,2) + 97692*C(n,3) + 10308758*C(n,4) + 337560150*C(n,5) + 5098740090*C(n,6) + 42976836210*C(n,7) + 224685801060*C(n,8) + 775389028050*C(n,9) + 1830791421900*C(n,10) + 3007909258200*C(n,11) + 3439214024400*C(n,12) + 2685727044000*C(n,13) + 1366701336000*C(n,14) + 408648240000*C(n,15) + 54486432000*C(n,16), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. %F A337954 a(n) = A337952(n) - A128767(n) = (A337952(n) - A337955(n)) / 2 = A128767(n) - A337955(n). %t A337954 Table[(n^16-12n^12+12n^10+43n^8-48n^6-44n^4+48n^2)/384,{n, 30}] %Y A337954 Cf. A337952 (oriented), A128767 (unoriented), A337955 (achiral). %Y A337954 Other elements: A331360 (tesseract edges, hyperoctahedron faces), A331356 (tesseract faces, hyperoctahedron edges), A234249(n+1) (tesseract facets, hyperoctahedron vertices). %Y A337954 Other polychora: A000389 (4-simplex facets/vertices), A338950 (24-cell), A338966 (120-cell, 600-cell). %Y A337954 Row 4 of A325014 (orthoplex facets, orthotope vertices). %K A337954 nonn,easy %O A337954 1,2 %A A337954 _Robert A. Russell_, Oct 03 2020