This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337983 #10 Oct 13 2020 14:34:46 %S A337983 1,0,1,1,1,1,3,1,3,3,5,1,13,1,13,7,19,1,35,1,59,15,65,1,117,5,133,27, %T A337983 195,1,411,7,435,67,617,17,941,7,1177,135,1571,13,2939,31,3299,375, %U A337983 4757,13,6709,43,8813,643,11307,61,16427,123,24331,1203,30461,67 %N A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1. %C A337983 Number of pairwise non-coprime strict compositions of n. %e A337983 The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15): %e A337983 2 3 4 5 6 7 8 9 A B C D E F %e A337983 24 26 36 28 2A 2C 3C %e A337983 42 62 63 46 39 4A 5A %e A337983 64 48 68 69 %e A337983 82 84 86 96 %e A337983 93 A4 A5 %e A337983 A2 C2 C3 %e A337983 246 248 %e A337983 264 284 %e A337983 426 428 %e A337983 462 482 %e A337983 624 824 %e A337983 642 842 %t A337983 stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; %t A337983 Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}] %Y A337983 A318717 is the unordered version. %Y A337983 A318719 is the version for Heinz numbers of partitions. %Y A337983 A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime. %Y A337983 A337605*6 counts these compositions of length 3. %Y A337983 A337667 is the non-strict version, ranked by A337666. %Y A337983 A337696 ranks these compositions. %Y A337983 A051185 and A305843 (covering) count pairwise intersecting set-systems. %Y A337983 A101268 counts pairwise coprime or singleton compositions. %Y A337983 A200976 and A328673 are the unordered version. %Y A337983 A233564 ranks strict compositions. %Y A337983 A318749 is the version for factorizations, with non-strict version A319786. %Y A337983 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337983 A335236 ranks compositions neither a singleton nor pairwise coprime. %Y A337983 A337462 counts pairwise coprime compositions. %Y A337983 A337694 lists numbers with no two relatively prime prime indices. %Y A337983 Cf. A082024, A284825, A302797, A305713, A319752, A327516, A333227, A335235, A336737, A337604. %K A337983 nonn %O A337983 0,7 %A A337983 _Gus Wiseman_, Oct 06 2020