This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337984 #5 Nov 01 2020 01:46:49 %S A337984 15,33,35,51,55,69,77,85,93,95,119,123,141,143,145,155,161,165,177, %T A337984 187,201,205,209,215,217,219,221,249,253,255,265,287,291,295,309,323, %U A337984 327,329,335,341,355,381,385,391,395,403,407,411,413,415,437,447,451,465 %N A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime. %C A337984 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A337984 Equals A302568\A000040. %e A337984 The sequence of terms together with their prime indices begins: %e A337984 15: {2,3} 155: {3,11} 265: {3,16} %e A337984 33: {2,5} 161: {4,9} 287: {4,13} %e A337984 35: {3,4} 165: {2,3,5} 291: {2,25} %e A337984 51: {2,7} 177: {2,17} 295: {3,17} %e A337984 55: {3,5} 187: {5,7} 309: {2,27} %e A337984 69: {2,9} 201: {2,19} 323: {7,8} %e A337984 77: {4,5} 205: {3,13} 327: {2,29} %e A337984 85: {3,7} 209: {5,8} 329: {4,15} %e A337984 93: {2,11} 215: {3,14} 335: {3,19} %e A337984 95: {3,8} 217: {4,11} 341: {5,11} %e A337984 119: {4,7} 219: {2,21} 355: {3,20} %e A337984 123: {2,13} 221: {6,7} 381: {2,31} %e A337984 141: {2,15} 249: {2,23} 385: {3,4,5} %e A337984 143: {5,6} 253: {5,9} 391: {7,9} %e A337984 145: {3,10} 255: {2,3,7} 395: {3,22} %t A337984 Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&] %Y A337984 A005117 is a superset. %Y A337984 A337485 counts these partitions. %Y A337984 A302568 considers singletons to be coprime. %Y A337984 A304711 allows 1's, with squarefree version A302797. %Y A337984 A337694 is the pairwise non-coprime instead of pairwise coprime version. %Y A337984 A007359 counts partitions into singleton or pairwise coprime parts with no 1's %Y A337984 A101268 counts pairwise coprime or singleton compositions, ranked by A335235. %Y A337984 A305713 counts pairwise coprime strict partitions. %Y A337984 A327516 counts pairwise coprime partitions, ranked by A302696. %Y A337984 A337462 counts pairwise coprime compositions, ranked by A333227. %Y A337984 A337561 counts pairwise coprime strict compositions. %Y A337984 A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228. %Y A337984 A337667 counts pairwise non-coprime compositions, ranked by A337666. %Y A337984 A337697 counts pairwise coprime compositions with no 1's. %Y A337984 A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719. %Y A337984 Cf. A051424, A056239, A087087, A112798, A200976, A220377, A302569, A303140, A303282, A328673, A328867. %K A337984 nonn %O A337984 1,1 %A A337984 _Gus Wiseman_, Oct 22 2020