This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337987 #6 Nov 01 2020 01:47:04 %S A337987 15,33,35,45,51,55,69,75,77,85,93,95,99,119,123,135,141,143,145,153, %T A337987 155,161,165,175,177,187,201,205,207,209,215,217,219,221,225,245,249, %U A337987 253,255,265,275,279,287,291,295,297,309,323,327,329,335,341,355,363,369 %N A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1). %C A337987 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A337987 Also Heinz numbers of integer partitions with no 1's whose distinct parts are pairwise coprime (A338315). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A337987 The sequence of terms together with their prime indices begins: %e A337987 15: {2,3} 135: {2,2,2,3} 215: {3,14} %e A337987 33: {2,5} 141: {2,15} 217: {4,11} %e A337987 35: {3,4} 143: {5,6} 219: {2,21} %e A337987 45: {2,2,3} 145: {3,10} 221: {6,7} %e A337987 51: {2,7} 153: {2,2,7} 225: {2,2,3,3} %e A337987 55: {3,5} 155: {3,11} 245: {3,4,4} %e A337987 69: {2,9} 161: {4,9} 249: {2,23} %e A337987 75: {2,3,3} 165: {2,3,5} 253: {5,9} %e A337987 77: {4,5} 175: {3,3,4} 255: {2,3,7} %e A337987 85: {3,7} 177: {2,17} 265: {3,16} %e A337987 93: {2,11} 187: {5,7} 275: {3,3,5} %e A337987 95: {3,8} 201: {2,19} 279: {2,2,11} %e A337987 99: {2,2,5} 205: {3,13} 287: {4,13} %e A337987 119: {4,7} 207: {2,2,9} 291: {2,25} %e A337987 123: {2,13} 209: {5,8} 295: {3,17} %t A337987 Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&] %Y A337987 A304711 is the not necessarily odd version, with squarefree case A302797. %Y A337987 A337694 is a pairwise non-coprime instead of pairwise coprime version. %Y A337987 A337984 is the squarefree case. %Y A337987 A338315 counts the partitions with these Heinz numbers. %Y A337987 A338316 considers singletons coprime. %Y A337987 A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568. %Y A337987 A304709 counts partitions whose distinct parts are pairwise coprime. %Y A337987 A327516 counts pairwise coprime partitions, with Heinz numbers A302696. %Y A337987 A337462 counts pairwise coprime compositions, ranked by A333227. %Y A337987 A337561 counts pairwise coprime strict compositions. %Y A337987 A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228. %Y A337987 A337667 counts pairwise non-coprime compositions, ranked by A337666. %Y A337987 A337697 counts pairwise coprime compositions with no 1's. %Y A337987 A318717 counts pairwise non-coprime strict partitions, with Heinz numbers A318719. %Y A337987 Cf. A005408, A051424, A056239, A087087, A112798, A200976, A289508, A289509, A302569, A303282, A328867, A337485. %K A337987 nonn %O A337987 1,1 %A A337987 _Gus Wiseman_, Oct 23 2020