cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337994 T(n, k) = (k*(2*k+2)*(2*k+1)*(2*n-1)*binomial(2*(n-1),n-1))/(n*(n+1)*(n+2)) for n, k > 0 and T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 3, 15, 0, 6, 30, 84, 0, 14, 70, 196, 420, 0, 36, 180, 504, 1080, 1980, 0, 99, 495, 1386, 2970, 5445, 9009, 0, 286, 1430, 4004, 8580, 15730, 26026, 40040, 0, 858, 4290, 12012, 25740, 47190, 78078, 120120, 175032
Offset: 0

Views

Author

Peter Luschny, Nov 01 2020

Keywords

Comments

T(n, k) is divisible by A099398(n) for all 0 <= k <= n.

Examples

			Triangle starts:
[0] 1
[1] 0, 2
[2] 0, 3,    15
[3] 0, 6,    30,    84
[4] 0, 14,   70,    196,   420
[5] 0, 36,   180,   504,   1080,  1980
[6] 0, 99,   495,   1386,  2970,  5445,   9009
[7] 0, 286,  1430,  4004,  8580,  15730,  26026,  40040
[8] 0, 858,  4290,  12012, 25740, 47190,  78078,  120120, 175032
[9] 0, 2652, 13260, 37128, 79560, 145860, 241332, 371280, 541008, 755820
		

Crossrefs

Cf. A119578 (row sums), (-1)^n*A005430 (alternating row sums), A002740 (main diagonal), A007054 (col 1), A099398 (universal divisor), A000108 (Catalan).

Programs

  • Maple
    T := proc(n, k) if n = 0 then 1 else
    (k*(2*k+2)*(2*k+1)*(2*n-1)*binomial(2*(n-1), n-1))/(n*(n+1)*(n+2)) fi end:
    # Recursive:
    CatalanNumber := n -> binomial(2*n, n)/(n+1):
    T := proc(n, k) option remember; if k=0 then k^n elif k=n then CatalanNumber(n+1)* binomial(n+1, 2) else (4 - 10/(n + 2))*T(n-1, k) fi end:
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := If[n == 0, 1, (k (2k + 2)(2k + 1)(2n - 1) CatalanNumber[n-1])/((n + 1) (n + 2))]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten

Formula

Let t(n) denote the triangular numbers and C(n) the Catalan numbers.
T(n, k) = k*(2*n - 1)*(t(2*k + 1)/t(n + 1))*C(n - 1) for n, k > 0.
T(n, k) = k^n if k = 0; if k = n then C(n+1)*t(n+1); else T(n-1, k)*(4-10/(n+2)).