This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337997 #18 Oct 07 2020 18:18:42 %S A337997 1,0,1,0,2,8,0,6,48,162,0,24,384,1944,6144,0,120,3840,29160,122880, %T A337997 375000,0,720,46080,524880,2949120,11250000,33592320,0,5040,645120, %U A337997 11022480,82575360,393750000,1410877440,4150656720 %N A337997 Triangle read by rows, generalized Eulerian polynomials evaluated at x = 1. %H A337997 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized">Generalized Eulerian polynomials</a>. %F A337997 The polynomials are defined P(0,0,x)=1 and P(n,k,x) = (1/2)*Sum_{m=0..n} S(m)*x^m where S(m) = Sum_{j=0..n+1}(-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1). %F A337997 T(n, k) = P(n, k, 1). %F A337997 T(n, k) = n!*k^n. - _Hugo Pfoertner_, Oct 07 2020 %e A337997 Polynomial triangle starts: %e A337997 [0] 1 %e A337997 [1] 0, 1 %e A337997 [2] 0, 1+x, x^2+6*x+1 %e A337997 [3] 0, x^2+4*x+1, x^3+23*x^2+23*x+1, 8*x^3+93*x^2+60*x+1 %e A337997 [4] 0, x^3+11*x^2+11*x+1, x^4+76*x^3+230*x^2+76*x+1, 16*x^4+545*x^3+1131*x^2+251*x+ %e A337997 1, 81*x^4+1996*x^3+3446*x^2+620*x+1 %e A337997 Integer triangle starts: %e A337997 [0] 1 %e A337997 [1] 0, 1 %e A337997 [2] 0, 2, 8 %e A337997 [3] 0, 6, 48, 162 %e A337997 [4] 0, 24, 384, 1944, 6144 %e A337997 [5] 0, 120, 3840, 29160, 122880, 375000 %e A337997 [6] 0, 720, 46080, 524880, 2949120, 11250000, 33592320 %e A337997 [7] 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720 %p A337997 # Two alternative implementations are given in the link. %p A337997 GeneralizedEulerianPolynomial := proc(n, k, x) local S; %p A337997 if n = 0 then return 1 fi; %p A337997 S := m -> add((-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1),j=0..n+1); %p A337997 add(S(m)*x^m, m=0..n)/2 end: %p A337997 T := (n, k) -> subs(x=1, GeneralizedEulerianPolynomial(n, k, x)): %p A337997 for n from 0 to 6 do seq(T(n, k), k=0..n) od; %Y A337997 Cf. A225116, A225117, A225118, A337996, A008292, A060187, A173018, A123125, A284861. %K A337997 nonn,tabl %O A337997 0,5 %A A337997 _Peter Luschny_, Oct 07 2020