This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338001 #18 Nov 18 2020 12:35:53 %S A338001 1,0,1,0,2,2,0,6,2,3,0,24,8,4,3,4,0,120,8,12,6,6,4,5,0,720,48,16,48, %T A338001 18,6,18,8,8,5,6,0,5040,48,48,240,18,24,12,72,12,8,24,10,10,6,7,0, %U A338001 40320,384,96,192,1440,36,36,24,36,360,32,12,32,16,96,15,10,30,12,12,7,8 %N A338001 Irregular triangle read by rows, a refinement of A271708. %C A338001 Row n of the triangle gives the sizes of the centralizers of any permutation of cycle type given by the partitions of n with max. part k. %C A338001 T(n, k) divides n! if k > 0 and in this case the n!/T(n, k) give, up to order, the rows of A036039. %H A338001 S. W. Golomb and P. Gaal, <a href="https://doi.org/10.1006/aama.1997.0567">On the number of permutations of n objects with greatest cycle length k</a>, Adv. in Appl. Math., 20(1), 1998, 98-107. %e A338001 Triangle rows start: %e A338001 0: [1]; %e A338001 1: [0], [1]; %e A338001 2: [0], [2], [2]; %e A338001 3: [0], [6], [2], [3]; %e A338001 4: [0], [24], [8, 4], [3], [4]; %e A338001 5: [0], [120], [8, 12], [6, 6], [4], [5]; %e A338001 6: [0], [720], [48, 16, 48], [18, 6, 18], [8, 8], [5], [6]; %e A338001 7: [0], [5040], [48, 48, 240], [18, 24, 12, 72], [12, 8, 24], [10, 10], [6], [7]; %e A338001 . %e A338001 For n = 4 the partition of 4 with cycle type [2, 2] has centralizer size 8, and the partition [2, 1, 1] has centralizer size 4. Therefore in column 2 in the above triangle the pair [8, 4] appears. %o A338001 (SageMath) %o A338001 def A338001(n): %o A338001 R = [] %o A338001 for k in (0..n): %o A338001 P = Partitions(n, max_part=k, inner=[k]) %o A338001 q = [p.aut() for p in P] %o A338001 R.append(q if q != [] else [0]) %o A338001 return flatten(R) %o A338001 for n in (0..7): print(A338001(n)) %Y A338001 Cf. A271708, A110143 (row sums), A052810 (row length), A126074, A036039. %K A338001 nonn,tabf %O A338001 0,5 %A A338001 _Peter Luschny_, Nov 13 2020