This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338029 #58 Feb 16 2025 08:34:00 %S A338029 1,1,1,1,16,1,1,192,192,1,1,2304,17745,2304,1,1,27648,1612127,1612127, %T A338029 27648,1,1,331776,146356224,1064918960,146356224,331776,1,1,3981312, %U A338029 13286470095,698512774464,698512774464,13286470095,3981312,1 %N A338029 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of spanning trees in the n X k king graph. %H A338029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A338029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %F A338029 T(n,k) = T(k,n). %e A338029 Square array T(n,k) begins: %e A338029 1, 1, 1, 1, 1, ... %e A338029 1, 16, 192, 2304, 27648, ... %e A338029 1, 192, 17745, 1612127, 146356224, ... %e A338029 1, 2304, 1612127, 1064918960, 698512774464, ... %e A338029 1, 27648, 146356224, 698512774464, 3271331573452800, ... %o A338029 (Python) %o A338029 # Using graphillion %o A338029 from graphillion import GraphSet %o A338029 def make_nXk_king_graph(n, k): %o A338029 grids = [] %o A338029 for i in range(1, k + 1): %o A338029 for j in range(1, n): %o A338029 grids.append((i + (j - 1) * k, i + j * k)) %o A338029 if i < k: %o A338029 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A338029 if i > 1: %o A338029 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A338029 for i in range(1, k * n, k): %o A338029 for j in range(1, k): %o A338029 grids.append((i + j - 1, i + j)) %o A338029 return grids %o A338029 def A338029(n, k): %o A338029 if n == 1 or k == 1: return 1 %o A338029 universe = make_nXk_king_graph(n, k) %o A338029 GraphSet.set_universe(universe) %o A338029 spanning_trees = GraphSet.trees(is_spanning=True) %o A338029 return spanning_trees.len() %o A338029 print([A338029(j + 1, i - j + 1) for i in range(8) for j in range(i + 1)]) %Y A338029 Rows and columns 1..5 give A000012, A338100, A338532, A338617, A339257. %Y A338029 Main diagonal gives A288957. %Y A338029 Cf. A116469. %K A338029 nonn,tabl %O A338029 1,5 %A A338029 _Seiichi Manyama_, Nov 29 2020