cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338038 a(n) is the sum of the primes and exponents in the prime factorization of n, but ignoring 1-exponents.

This page as a plain text file.
%I A338038 #19 May 10 2024 04:08:47
%S A338038 0,2,3,4,5,5,7,5,5,7,11,7,13,9,8,6,17,7,19,9,10,13,23,8,7,15,6,11,29,
%T A338038 10,31,7,14,19,12,9,37,21,16,10,41,12,43,15,10,25,47,9,9,9,20,17,53,8,
%U A338038 16,12,22,31,59,12,61,33,12,8,18,16,67,21,26,14,71,10
%N A338038 a(n) is the sum of the primes and exponents in the prime factorization of n, but ignoring 1-exponents.
%C A338038 First differs from A106492 for n=64.
%H A338038 Robert Israel, <a href="/A338038/b338038.txt">Table of n, a(n) for n = 1..10000</a>
%H A338038 Chris Bispels, Muhammet Boran, Steven J. Miller, Eliel Sosis, and Daniel Tsai, <a href="https://arxiv.org/abs/2405.05267">v-Palindromes: An Analogy to the Palindromes</a>, arXiv:2405.05267 [math.HO], 2024.
%H A338038 Daniel Tsai, <a href="https://arxiv.org/abs/2010.03151">A recurring pattern in natural numbers of a certain property</a>, arXiv:2010.03151 [math.NT], 2020.
%H A338038 Daniel Tsai, <a href="http://math.colgate.edu/~integers/v32/v32.mail.html">A recurring pattern in natural numbers of a certain property</a>, Integers (2021) Vol. 21, Article #A32.
%F A338038 a(n) = A008474(n) for powerful numbers (A001694).
%e A338038 For n = 18 = 2*3^2, a(18) = 2 + (3+2) = 7.
%p A338038 f:= proc(n) local t;
%p A338038   add(t[1]+t[2],t=subs(1=0,ifactors(n)[2]));
%p A338038 end proc:
%p A338038 map(f, [$1..100]); # _Robert Israel_, Oct 13 2020
%t A338038 a[1] = 0; a[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Array[a, 100] (* _Amiram Eldar_, Oct 08 2020 *)
%o A338038 (PARI) a(n) = my(f=factor(n)); vecsum(f[,1]) + sum(k=1, #f~, if (f[k,2]!=1, f[k,2]));
%Y A338038 Cf. A008474, A001694, A106492, A338039.
%K A338038 nonn
%O A338038 1,2
%A A338038 _Michel Marcus_, Oct 08 2020