This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338041 #21 Oct 19 2020 16:41:57 %S A338041 1,2,7,6,15,12,25,20,37,30,51,42,67,56,85,72,105,90,127,110,151,132, %T A338041 177,156,205,182,235,210,267,240,301,272,337,306,375,342,415,380,457, %U A338041 420,501,462,547,506,595,552,645,600,697,650,751,702,807,756,865,812,925 %N A338041 Draw n rays from each of two distinct points in the plane; a(n) is the number of regions thus created. See Comments for details. %C A338041 The rays are evenly spaced around each point. The first ray of one point goes opposite to the direction to the other point. Should a ray hit the other point it terminates there, that is, it is converted to a line segment. %C A338041 To produce the illustrations below, all pairwise intersections between the rays is calculated and the maximum distance to the center, incremented by 20%, is taken as radius of a circle. Then all intersections between the rays and the circle defines a polygon which is used as limit. %H A338041 Lars Blomberg, <a href="/A338041/a338041.png">Illustration for n = 3</a> %H A338041 Lars Blomberg, <a href="/A338041/a338041_1.png">Illustration for n = 6</a> %H A338041 Lars Blomberg, <a href="/A338041/a338041_2.png">Illustration for n = 7</a> %H A338041 Lars Blomberg, <a href="/A338041/a338041_3.png">Illustration for n = 18</a> %H A338041 Lars Blomberg, <a href="/A338041/a338041_4.png">Illustration for n = 19</a> %H A338041 Lars Blomberg, <a href="/A338041/a338041_5.png">Illustration for n = 33</a> %F A338041 a(n) = (n^2 + 8*n - 5)/4, n odd; (n^2 + 2*n)/4, n even (conjectured). %F A338041 Conjectured by _Stefano Spezia_, Oct 08 2020 after _Lars Blomberg_: (Start) %F A338041 G.f.: x*(1 + x + 3*x^2 - 3*x^3)/((1 - x)^3*(1 + x)^2). %F A338041 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5. (End) %e A338041 For n=1: <-----x x-----> so a(1)=1. %e A338041 For n=2: <-----x<--->x-----> so a(2)=2. %o A338041 (PARI) a(n)=if(n%2==1,(n^2 + 8*n - 5)/4,(n^2 + 2*n)/4); %o A338041 vector(200, n, a(n)) %Y A338041 Cf. A338042 (vertices), A338043 (edges). %K A338041 nonn %O A338041 1,2 %A A338041 _Lars Blomberg_, Oct 08 2020