cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338046 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.

This page as a plain text file.
%I A338046 #4 Oct 09 2020 05:18:22
%S A338046 1,5,10,25,35,66,84,145,165,255,286,430,455,644,680,961,969,1305,1330,
%T A338046 1795,1771,2310,2300,3030,2925,3731,3654,4704,4495,5640,5456,6945,
%U A338046 6545,8109,7770,9741,9139,11210,10660,13275,12341,15015,14190,17490,16215,19596,18424,22630
%N A338046 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.
%F A338046 G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 - x)^4.
%F A338046 a(2*n) = a(n) + A002492(n), a(2*n+1) = A000447(n+1).
%F A338046 a(n) = (1/6) * Sum_{d|n} A209229(n/d) * d * (d + 1) * (d + 2).
%F A338046 Product_{n>=1} (1 + x^n)^a(n) = g.f. for A000335.
%t A338046 nmax = 48; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
%t A338046 a[n_] := If[EvenQ[n], a[n/2] + n (n + 1) (n + 2)/6, n (n + 1) (n + 2)/6]; Table[a[n], {n, 1, 48}]
%t A338046 Table[(1/6) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) (# + 2) &], {n, 1, 48}]
%Y A338046 Cf. A000292, A000335, A000447, A001511, A002492, A129527, A209229, A328407, A338045.
%K A338046 nonn
%O A338046 1,2
%A A338046 _Ilya Gutkovskiy_, Oct 08 2020