cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338071 Values of w(k) when w(k-2), w(k-1), and w(k) are all odd, where w is A336957.

This page as a plain text file.
%I A338071 #15 Oct 19 2020 14:09:25
%S A338071 3263,7183,11671,16291,16601,20741,23257,28639,37667,33163,38819,
%T A338071 43849,51469,52789,48701,50275,63323,65117,67903,67223,79751,72193,
%U A338071 71265,79183,80743,74741,106483,90571,94159,104467,108043,135821,109771,112561,119149,149387,116377,137951
%N A338071 Values of w(k) when w(k-2), w(k-1), and w(k) are all odd, where w is A336957.
%C A338071 See comments in A337644.
%C A338071 It would be nice to understand what is special about these numbers. The majority of them appear to products of two distinct primes. There seems to be very little overlap with either A337646 or A338057, although 1531513 appears both here and in A337646.
%H A338071 N. J. A. Sloane, <a href="/A338071/b338071.txt">Table of n, a(n) for n = 1..575</a>
%e A338071 The factorizations of the first 10 terms are:
%e A338071 1, (13)*(251)
%e A338071 2, (11)*(653)
%e A338071 3, (11)*(1061)
%e A338071 4, (11)*(1481)
%e A338071 5, (13)*(1277)
%e A338071 6, (7)*(2963)
%e A338071 7, (13)*(1789)
%e A338071 8, (13)*(2203)
%e A338071 9, (7)*(5381)
%e A338071 10, (13)*(2551)
%e A338071 The factorizations of terms 555 through 575 are:
%e A338071 555, (11)*(118681)
%e A338071 556, (7)*(213833)
%e A338071 557, (7)*(213887)
%e A338071 558, (11)*(118901)
%e A338071 559, (3)*(5)*(83059)
%e A338071 560, (11)*(120619)
%e A338071 561, (13)*(98867)
%e A338071 562, (11)*(121021)
%e A338071 563, (13)*(99391)
%e A338071 564, (7)*(218873)
%e A338071 565, (11)*(121621)
%e A338071 566, (13)*(99571)
%e A338071 567, (13)*(99989)
%e A338071 568, (11)*(122299)
%e A338071 569, (13)*(122503)
%e A338071 570, (11)*(122533)
%e A338071 571, (11)*(122579)
%e A338071 572, (13)*(100537)
%e A338071 573, (7)*(221537)
%e A338071 574, (11)*(123427)
%e A338071 575, (31)*(38393)
%Y A338071 Cf. A336957, A337644, A337646, A338057, A338070.
%K A338071 nonn
%O A338071 1,1
%A A338071 _N. J. A. Sloane_, Oct 19 2020