This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338078 #7 Oct 21 2020 23:07:12 %S A338078 57,185,385,481,629,721,779,1121,1441,1729,2419,2737,5665,6721,7471, %T A338078 8401,9361,10465,10561,11285,11521,11859,12257,13585,14705,15281, %U A338078 16321,16583,18849,24721,25345,25441,25593,30745,33649,35219,36481,36581,37949,38665,39169 %N A338078 Odd composite integers m such that A085447(m) == 6 (mod m). %C A338078 If p is a prime, then A085447(p)==6 (mod p). %C A338078 This sequence contains the odd composite integers for which the congruence holds. %C A338078 The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1. %C A338078 For a=6, b=-1, V(m) recovers A085447(m). %D A338078 D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020. %D A338078 D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021) %t A338078 Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 6] - 6, #] &] %Y A338078 Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5). %K A338078 nonn %O A338078 1,1 %A A338078 _Ovidiu Bagdasar_, Oct 08 2020 %E A338078 More terms from _Amiram Eldar_, Oct 09 2020