This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338081 #10 Jul 08 2021 23:24:44 %S A338081 21,25,35,49,51,65,85,91,119,147,161,175,221,231,245,325,357,377,391, %T A338081 399,425,455,539,559,561,575,595,629,637,759,791,833,1001,1105,1127, %U A338081 1225,1247,1295,1309,1495,1547,1633,1763,1775,1921,2001,2015,2261,2275,2407 %N A338081 Odd composite integers such that A054413(m)^2 == 1 (mod m). %C A338081 The generalized Lucas sequence of integer parameters (a,b) is defined by %C A338081 U(m+2) = a*U(m+1)-b*U(m) and U(0)=0, U(1)=1. %C A338081 Whenever p is prime and b=-1,1 we have U^2(p) == 1 (mod p). %C A338081 Here we define the odd composite integers for which U^2(m) == 1 (mod m) holds, for a=7, b=-1, where U(m) is A054413(m). %D A338081 D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020. %D A338081 D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021) %H A338081 Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.3390/math9080838">On Generalized Lucas Pseudoprimality of Level k</a>, Mathematics (2021) Vol. 9, 838. %t A338081 Select[Range[3, 15000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 7]*Fibonacci[#, 7] - 1, #] &] %Y A338081 Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms), A337235 (a=3, even terms), A337236 (a=4), A337237 (a=5), A338081 (a=6). %K A338081 nonn %O A338081 1,1 %A A338081 _Ovidiu Bagdasar_, Oct 08 2020