cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338093 Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity).

This page as a plain text file.
%I A338093 #39 Sep 12 2021 11:19:37
%S A338093 16,27,256,540,756,1200,1890,2940,3060,3125,4050,4200,4320,5460,6000,
%T A338093 6048,7920,8232,10080,10164,10368,10530,11232,11286,12960,13104,13524,
%U A338093 13800,14000,14157,14175,15708,15960,17280,18200,18480,19278,19683,19992,20295,23814
%N A338093 Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity).
%C A338093 If a(n)=p1*p2*..*pk where p1,p2,..pk primes, then a(n)=m(p1^2+p2^2+..+pk^2) with m a positive integer.
%C A338093 For the special case of m=1, a(n) is equal to the sum of the squares of its prime factors.
%C A338093 There are only 5 known numbers to have this property:
%C A338093 16, 27 and three more numbers with 123, 163 and 179 digits found by _Giorgos Kalogeropoulos_ (see Rivera links).
%C A338093 It is not known if any smaller numbers than those three exist for the case of m=1.
%C A338093 From _Robert Israel_, Oct 16 2020: (Start)
%C A338093 Suppose n is in the sequence with n = k*A067666(n).  Then n^m is in the sequence if m divides k^m (in particular for m=k).
%C A338093 For any prime p, p^(p^j) is in the sequence if j >= 1 (except j>=2 if p=2). (End)
%H A338093 Robert Israel, <a href="/A338093/b338093.txt">Table of n, a(n) for n = 1..2000</a>
%H A338093 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_625.htm">Puzzle 625. Sum of squares of prime divisors</a>, The Prime Puzzles and Problems Connection.
%H A338093 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1019.htm">Puzzle 1019. Follow-up to Puzzle 625</a>, The Prime Puzzles and Problems Connection.
%e A338093 16 = 2*2*2*2 = 1*(2^2 + 2^2 + 2^2 + 2^2).
%e A338093 7920 = 2*2*2*2*3*3*5*11 = 44*(2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 5^2 + 11^2).
%p A338093 filter:= proc(n) local t;
%p A338093   if isprime(n) then return false fi;
%p A338093   n mod add(t[1]^2*t[2],t=ifactors(n)[2]) = 0
%p A338093 end proc:
%p A338093 select(filter, [$4..30000]); # _Robert Israel_, Oct 16 2020
%t A338093 Select[Range@20000,Mod[#,Total[Flatten[Table@@@FactorInteger@#]^2]]==0&]
%o A338093 (PARI) isok(m) = if (!isprime(m) && (m>1), my(f=factor(m)); (m % sum(k=1, #f~, f[k,1]^2*f[k,2])) == 0); \\ _Michel Marcus_, Oct 11 2020
%Y A338093 Cf. A067666.
%K A338093 nonn
%O A338093 1,1
%A A338093 _Giorgos Kalogeropoulos_, Oct 09 2020