This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338093 #39 Sep 12 2021 11:19:37 %S A338093 16,27,256,540,756,1200,1890,2940,3060,3125,4050,4200,4320,5460,6000, %T A338093 6048,7920,8232,10080,10164,10368,10530,11232,11286,12960,13104,13524, %U A338093 13800,14000,14157,14175,15708,15960,17280,18200,18480,19278,19683,19992,20295,23814 %N A338093 Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity). %C A338093 If a(n)=p1*p2*..*pk where p1,p2,..pk primes, then a(n)=m(p1^2+p2^2+..+pk^2) with m a positive integer. %C A338093 For the special case of m=1, a(n) is equal to the sum of the squares of its prime factors. %C A338093 There are only 5 known numbers to have this property: %C A338093 16, 27 and three more numbers with 123, 163 and 179 digits found by _Giorgos Kalogeropoulos_ (see Rivera links). %C A338093 It is not known if any smaller numbers than those three exist for the case of m=1. %C A338093 From _Robert Israel_, Oct 16 2020: (Start) %C A338093 Suppose n is in the sequence with n = k*A067666(n). Then n^m is in the sequence if m divides k^m (in particular for m=k). %C A338093 For any prime p, p^(p^j) is in the sequence if j >= 1 (except j>=2 if p=2). (End) %H A338093 Robert Israel, <a href="/A338093/b338093.txt">Table of n, a(n) for n = 1..2000</a> %H A338093 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_625.htm">Puzzle 625. Sum of squares of prime divisors</a>, The Prime Puzzles and Problems Connection. %H A338093 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1019.htm">Puzzle 1019. Follow-up to Puzzle 625</a>, The Prime Puzzles and Problems Connection. %e A338093 16 = 2*2*2*2 = 1*(2^2 + 2^2 + 2^2 + 2^2). %e A338093 7920 = 2*2*2*2*3*3*5*11 = 44*(2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 5^2 + 11^2). %p A338093 filter:= proc(n) local t; %p A338093 if isprime(n) then return false fi; %p A338093 n mod add(t[1]^2*t[2],t=ifactors(n)[2]) = 0 %p A338093 end proc: %p A338093 select(filter, [$4..30000]); # _Robert Israel_, Oct 16 2020 %t A338093 Select[Range@20000,Mod[#,Total[Flatten[Table@@@FactorInteger@#]^2]]==0&] %o A338093 (PARI) isok(m) = if (!isprime(m) && (m>1), my(f=factor(m)); (m % sum(k=1, #f~, f[k,1]^2*f[k,2])) == 0); \\ _Michel Marcus_, Oct 11 2020 %Y A338093 Cf. A067666. %K A338093 nonn %O A338093 1,1 %A A338093 _Giorgos Kalogeropoulos_, Oct 09 2020