A338096 Number of ways to write 2*n+1 as x^2 + y^2 + z^2 + w^2 with x + 2*y + 3*z a positive power of two, where x, y, z, w are nonnegative integers.
1, 1, 5, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 4, 7, 2, 5, 5, 3, 3, 6, 1, 5, 3, 2, 6, 6, 2, 4, 2, 2, 2, 8, 2, 7, 3, 5, 6, 6, 1, 5, 6, 7, 7, 8, 4, 6, 5, 5, 7, 11, 3, 13, 5, 3, 6, 11, 4, 7, 6, 3, 7, 9, 5, 8, 6, 3, 8, 9, 5, 10, 3, 9, 8, 7, 2, 7, 6, 5, 4, 4, 3, 12, 7, 3, 9, 9, 5, 11, 8, 2, 5, 10, 3, 5, 5, 2, 9, 9, 4, 13
Offset: 0
Keywords
Examples
a(1) = 1, and 2*1 + 1 = 1^2 + 0^2 + 1^2 + 1^2 with 1 + 2*0 + 3*1 = 2^2. a(3) = 1, and 2*3 + 1 = 1^2 + 2^2 + 1^2 + 1^2 with 1 + 2*2 + 3*1 = 2^3. a(9) = 1, and 2*9 + 1 = 1^2 + 6^2 + 1^2 + 1^2 with 1 + 2*6 + 3*1 = 2^4. a(21) = 1, and 2*21 + 1 = 5^2 + 4^2 + 1^2 + 1^2 with 5 + 2*4 + 3*1 = 2^4. a(39) = 1, and 2*39 + 1 = 1^2 + 5^2 + 7^2 + 2^2 with 1 + 2*5 + 3*7 = 2^5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; PQ[n_]:=PQ[n]=n>1&&IntegerQ[Log[2,n]]; tab={};Do[r=0;Do[If[SQ[2n+1-x^2-y^2-z^2]&&PQ[x+2y+3z],r=r+1],{x,0,Sqrt[2n+1]},{y,Boole[x==0],Sqrt[2n+1-x^2]},{z,0,Sqrt[2n+1-x^2-y^2]}]; tab=Append[tab,r],{n,0,100}];Print[tab]
Comments