This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338100 #54 Feb 16 2025 08:34:00 %S A338100 1,16,192,2304,27648,331776,3981312,47775744,573308928,6879707136, %T A338100 82556485632,990677827584,11888133931008,142657607172096, %U A338100 1711891286065152,20542695432781824,246512345193381888,2958148142320582656,35497777707846991872,425973332494163902464,5111679989929966829568 %N A338100 Number of spanning trees in the n X 2 king graph. %H A338100 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A338100 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %H A338100 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (12). %F A338100 a(n) = 12 * a(n-1) for n > 2. %F A338100 a(n) = 3^(n-2) * 4^n for n > 1. %F A338100 G.f.: x*(1 + 4*x)/(1 - 12*x). - _Stefano Spezia_, Nov 29 2020 %o A338100 (Python) %o A338100 # Using graphillion %o A338100 from graphillion import GraphSet %o A338100 def make_nXk_king_graph(n, k): %o A338100 grids = [] %o A338100 for i in range(1, k + 1): %o A338100 for j in range(1, n): %o A338100 grids.append((i + (j - 1) * k, i + j * k)) %o A338100 if i < k: %o A338100 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A338100 if i > 1: %o A338100 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A338100 for i in range(1, k * n, k): %o A338100 for j in range(1, k): %o A338100 grids.append((i + j - 1, i + j)) %o A338100 return grids %o A338100 def A338029(n, k): %o A338100 if n == 1 or k == 1: return 1 %o A338100 universe = make_nXk_king_graph(n, k) %o A338100 GraphSet.set_universe(universe) %o A338100 spanning_trees = GraphSet.trees(is_spanning=True) %o A338100 return spanning_trees.len() %o A338100 def A338100(n): %o A338100 return A338029(n, 2) %o A338100 print([A338100(n) for n in range(1, 20)]) %Y A338100 Column 2 of A338029. %K A338100 nonn,easy %O A338100 1,2 %A A338100 _Seiichi Manyama_, Nov 29 2020