A338103 Positive integers not congruent to 0 or 2 modulo 8 which cannot be written as x^2 + y^2 + z^2 + w^2 with x + 2*y + 3*z a positive power of 4, where x, y, z, w are nonnegative integers.
1, 7, 12, 15, 76, 79, 92, 115, 131, 151, 155, 175, 177, 181, 183, 199, 214, 235, 236, 237, 239, 243, 252, 259, 262, 268, 271, 279, 287, 1351, 1687, 1693, 1741, 1867, 2227, 2557, 2587, 2671, 2791, 2803, 2999, 3031, 3127, 3207, 3237, 3587, 3637, 3646, 3727, 3815, 3827, 3853, 3862, 3980, 4039, 4141, 4207, 4221, 4243, 4319, 4371, 4381, 4471, 4497, 4597, 4607, 4615, 4627
Offset: 1
Keywords
Examples
a(1) = 1. If x,y,z,w are nonnegative integers with x^2 + y^2 + z^2 + w^2 = 1, then x, y, z, w are all smaller than 2, and x + 2*y + 3*z = 4^k for no positive integer k.
Links
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; FQ[n_]:=FQ[n]=n>1&&IntegerQ[Log[4,n]]; tab={};Do[If[Mod[m,8]==0||Mod[m,8]==2,Goto[aa]];Do[If[SQ[m-x^2-y^2-z^2]&&FQ[x+2y+3z],Goto[aa]],{x,0,Sqrt[m]},{y,0,Sqrt[m-x^2]},{z,0,Sqrt[m-x^2-y^2]}];tab=Append[tab,m];Label[aa],{m,1,5000}];tab
Comments