cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338104 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n+1 vertices.

This page as a plain text file.
%I A338104 #41 Feb 16 2025 08:34:00
%S A338104 1,4,1200,2074464,10883911680,128615328600000,2881502756476710912,
%T A338104 109416128865750000000000,6508595325997684722663161856,
%U A338104 572150341080161420030586961966080,71062412455566037275496151040000000000
%N A338104 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n+1 vertices.
%C A338104 Equivalently, the graph can be described as the graph on 3*n + 1 vertices with labels 0..3*n and with i and j adjacent iff A011655(i + j) = 1.
%C A338104 These graphs are cographs.
%H A338104 H-Y. Ching, R. Florez, and A. Mukherjee, <a href="https://arxiv.org/abs/2009.02770">Families of Integral Cographs within a Triangular Arrays</a>, arXiv:2009.02770 [math.CO], 2020.
%H A338104 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>
%F A338104 a(n) = (n + 1)*(2*n)^n*(2*n + 1)^(2*(n - 1)).
%e A338104 The adjacency matrix of the graph associated with n = 2 is: (compare A204437)
%e A338104   [0, 1, 1, 0, 1, 1, 0]
%e A338104   [1, 0, 0, 1, 1, 0, 1]
%e A338104   [1, 0, 0, 1, 0, 1, 1]
%e A338104   [0, 1, 1, 0, 1, 1, 0]
%e A338104   [1, 1, 0, 1, 0, 0, 1]
%e A338104   [1, 0, 1, 1, 0, 0, 1]
%e A338104   [0, 1, 1, 0, 1, 1, 0]
%e A338104 a(2) = 1200 because the graph has 1200 spanning trees.
%t A338104 Table[(n + 1)*(2 n)^n*(2 n + 1)^(2 (n - 1)), {n, 1, 10}]
%Y A338104 Cf. A011655, A204437, A338109.
%K A338104 nonn
%O A338104 0,2
%A A338104 _Rigoberto Florez_, Oct 10 2020