This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338110 #22 Feb 16 2025 08:34:00 %S A338110 1,128,139968,536870912,5000000000000,92442129447518208, %T A338110 2988151979474457198592,154742504910672534362390528, %U A338110 12044329605471552321957641846784,1342177280000000000000000000000000000,206097683218942123873399068932507659403264,42281678783395138381516145098915043145456549888 %N A338110 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n vertices. %C A338110 Equivalently, the graph can be described as the graph on 3*n vertices with labels 0..3*n-1 and with i and j adjacent iff A011655(i + j) = 1. %C A338110 These graphs are cographs. %H A338110 H-Y. Ching, R. Florez, and A. Mukherjee, <a href="https://arxiv.org/abs/2009.02770">Families of Integral Cographs within a Triangular Arrays</a>, arXiv:2009.02770 [math.CO], 2020. %H A338110 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %F A338110 a(n) = n*(2*n)^(3*(n - 1)). %F A338110 a(n) = A193131(n)/3. %e A338110 The adjacency matrix of the graph associated with n = 2 is: (compare A204437) %e A338110 [0, 1, 1, 0, 1, 1] %e A338110 [1, 0, 0, 1, 1, 0] %e A338110 [1, 0, 0, 1, 0, 1] %e A338110 [0, 1, 1, 0, 1, 1] %e A338110 [1, 1, 0, 1, 0, 0] %e A338110 [1, 0, 1, 1, 0, 0] %e A338110 a(2) = 128 because the graph has 128 spanning trees. %t A338110 Table[n (2 n)^(3 (n - 1)), {n, 1, 10}] %Y A338110 Cf. A011655, A193131, A204437, A338104. %K A338110 nonn %O A338110 1,2 %A A338110 _Rigoberto Florez_, Oct 10 2020