cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338110 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n vertices.

This page as a plain text file.
%I A338110 #22 Feb 16 2025 08:34:00
%S A338110 1,128,139968,536870912,5000000000000,92442129447518208,
%T A338110 2988151979474457198592,154742504910672534362390528,
%U A338110 12044329605471552321957641846784,1342177280000000000000000000000000000,206097683218942123873399068932507659403264,42281678783395138381516145098915043145456549888
%N A338110 Number of spanning trees in the join of the disjoint union of two complete graphs each on n vertices with the empty graph on n vertices.
%C A338110 Equivalently, the graph can be described as the graph on 3*n vertices with labels 0..3*n-1 and with i and j adjacent iff A011655(i + j) = 1.
%C A338110 These graphs are cographs.
%H A338110 H-Y. Ching, R. Florez, and A. Mukherjee, <a href="https://arxiv.org/abs/2009.02770">Families of Integral Cographs within a Triangular Arrays</a>, arXiv:2009.02770 [math.CO], 2020.
%H A338110 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>
%F A338110 a(n) = n*(2*n)^(3*(n - 1)).
%F A338110 a(n) = A193131(n)/3.
%e A338110 The adjacency matrix of the graph associated with n = 2 is: (compare A204437)
%e A338110   [0, 1, 1, 0, 1, 1]
%e A338110   [1, 0, 0, 1, 1, 0]
%e A338110   [1, 0, 0, 1, 0, 1]
%e A338110   [0, 1, 1, 0, 1, 1]
%e A338110   [1, 1, 0, 1, 0, 0]
%e A338110   [1, 0, 1, 1, 0, 0]
%e A338110 a(2) = 128 because the graph has 128 spanning trees.
%t A338110 Table[n (2 n)^(3 (n - 1)), {n, 1, 10}]
%Y A338110 Cf. A011655, A193131, A204437, A338104.
%K A338110 nonn
%O A338110 1,2
%A A338110 _Rigoberto Florez_, Oct 10 2020