This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338114 #10 Oct 14 2020 10:38:02 %S A338114 1,1,3,3,1,1,32,693,7720,44150,138312,247380,252000,136080,30240,1, %T A338114 2134,4971504,1513872568,124978335900,4307090369304,78010256156784, %U A338114 849590196841344,6053725780061400,29824685516682000,105382759395846240,273441179492268480 %N A338114 Triangle read by rows: T(n,k) is the number of unoriented colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns. %C A338114 An n-dimensional simplex has n+1 vertices, C(n+1,3) faces, and C(n+1,3) peaks, which are (n-3)-dimensional simplexes. For n=2, the figure is a triangle with one face. For n=3, the figure is a tetrahedron with four triangular faces and four peaks (vertices). For n=4, the figure is a 4-simplex with ten triangular faces and ten peaks (edges). The Schläfli symbol {3,...,3}, of the regular n-dimensional simplex consists of n-1 3's. Two unoriented colorings are the same if they are congruent; chiral pairs are counted as one. %C A338114 The algorithm used in the Mathematica program below assigns each permutation of the vertices to a cycle-structure partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1). %H A338114 G. Royle, <a href="http://teaching.csse.uwa.edu.au/units/CITS7209/partition.pdf">Partitions and Permutations</a> %F A338114 A337884(n,k) = Sum_{j=1..C(n+1,3)} T(n,j) * binomial(k,j). %F A338114 T(n,k) = A338113(n,k) - A338115(n,k) = (A338113(n,k) + A338116(n,k)) / 2 = A338115(n,k) + A338116(n,k). %F A338114 T(3,k) = A007318(3,k-1); T(4,k) = A327088(4,k). %e A338114 Triangle begins with T(2,1): %e A338114 1 %e A338114 1 3 3 1 %e A338114 1 32 693 7720 44150 138312 247380 252000 136080 30240 %e A338114 ... %e A338114 For T(3,2)=3, the tetrahedron has one, two, or three faces (vertices) of one color. For T(3,4)=1, each of the four tetrahedron faces (vertices) is a different color. %t A338114 m=2; (* dimension of color element, here a triangular face *) %t A338114 lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*) %t A338114 cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d} %t A338114 compress[x:{{_, _} ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s) %t A338114 combine[a : {{_, _} ...}, b : {{_, _} ...}] := Outer[cxx, a, b, 1] %t A338114 CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *) %t A338114 CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]] %t A338114 CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]] %t A338114 pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *) %t A338114 row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!] %t A338114 array[n_, k_] := row[n] /. j -> k %t A338114 Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten %Y A338114 Cf. A338113 (oriented), A338115 (chiral), A338116 (achiral), A337884 (k or fewer colors), A007318(n,k-1) (vertices and facets), A327088 (edges and ridges). %K A338114 nonn,tabf %O A338114 2,3 %A A338114 _Robert A. Russell_, Oct 10 2020