cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338115 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.

This page as a plain text file.
%I A338115 #10 Oct 14 2020 10:38:13
%S A338115 0,0,0,0,1,0,6,387,6320,41350,135792,246540,252000,136080,30240,0,
%T A338115 1368,4771602,1503445800,124777747050,4305186592884,77999895773184,
%U A338115 849555062883744,6053648136215400,29824571700428400
%N A338115 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.
%C A338115 An n-dimensional simplex has n+1 vertices, C(n+1,3) faces, and C(n+1,3) peaks, which are (n-3)-dimensional simplexes. For n=2, the figure is a triangle with one face. For n=3, the figure is a tetrahedron with four triangular faces and four peaks (vertices). For n=4, the figure is a 4-simplex with ten triangular faces and ten peaks (edges). The Schläfli symbol {3,...,3}, of the regular n-dimensional simplex consists of n-1 3's. Each member of a chiral pair is a reflection, but not a rotation, of the other.
%C A338115 The algorithm used in the Mathematica program below assigns each permutation of the vertices to a cycle-structure partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
%H A338115 G. Royle, <a href="http://teaching.csse.uwa.edu.au/units/CITS7209/partition.pdf">Partitions and Permutations</a>
%F A338115 A337885(n,k) = Sum_{j=1..C(n+1,3)} T(n,j) * binomial(k,j).
%F A338115 T(n,k) = A338113(n,k) - A338114(n,k) = (A338113(n,k) - A338116(n,k)) / 2 = A338114(n,k) - A338116(n,k).
%F A338115 T(3,k) = [k==4]; T(4,k) = A327089(4,k).
%e A338115 Triangle begins with T(2,1):
%e A338115   0
%e A338115   0 0   0    1
%e A338115   0 6 387 6320 41350 135792 246540 252000 136080 30240
%e A338115   ...
%e A338115 For T(4,4)=1, each of the four tetrahedron faces (vertices) is a different color.
%t A338115 m=2; (* dimension of color element, here a triangular face *)
%t A338115 lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
%t A338115 cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
%t A338115 compress[x:{{_, _} ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
%t A338115 combine[a : {{_, _} ...}, b : {{_, _} ...}] := Outer[cxx, a, b, 1]
%t A338115 CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
%t A338115 CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
%t A338115 CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
%t A338115 pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
%t A338115 row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], 1, -1] pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
%t A338115 array[n_, k_] := row[n] /. j -> k
%t A338115 Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten
%Y A338115 Cf. A338113 (oriented), A338114 (unoriented), A338116 (achiral), A337885 (k or fewer colors), [k==n+1] (vertices and facets), A327089 (edges and ridges).
%K A338115 nonn,tabf
%O A338115 2,7
%A A338115 _Robert A. Russell_, Oct 10 2020