This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338117 #20 Dec 12 2021 22:55:05 %S A338117 0,0,1,1,1,1,1,2,2,1,1,3,1,1,3,3,1,2,1,3,3,1,1,5,2,1,3,3,1,3,1,4,3,1, %T A338117 3,5,1,1,3,5,1,3,1,3,5,1,1,7,2,2,3,3,1,3,3,5,3,1,1,7,1,1,5,5,3,3,1,3, %U A338117 3,3,1,8,1,1,5,3,3,3,1,7,4,1,1,7,3,1,3,5,1,5,3,3,3 %N A338117 Number of partitions of n into two parts (s,t) such that (t-s) | n, where s < t. %C A338117 Apparently a(n) = A320111(n) - 1. - _Hugo Pfoertner_, Oct 30 2020 %C A338117 The above observation is true, which can be seen from the formula A320111(2n) = A000005(n), A320111(2n+1) = A000005(2n+1). For odd numbers, the difference (t-s) may range over all the divisors of n except the n itself, and for even numbers the difference (t-s) [which is always even] may range only over the even divisors of n, except the n itself. Note that A000005(2n) = A000005(n) + A001227(n). - _Antti Karttunen_, Dec 12 2021 %H A338117 Antti Karttunen, <a href="/A338117/b338117.txt">Table of n, a(n) for n = 1..20160</a> %H A338117 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A338117 a(n) = Sum_{i=1..floor((n-1)/2)} (1 - ceiling(n/(n-2*i)) + floor(n/(n-2*i))). %e A338117 a(8) = 2; The partitions of 8 into two parts (s,t) such that s < t are (7,1), (6,2), (5,3) and (4,4). Only the partitions (6,2) and (5,3) have (6-2) | 8 and (5-3) | 8, so a(8) = 2. %t A338117 Table[Sum[(1 - Ceiling[n/(n - 2 i)] + Floor[n/(n - 2 i)]), {i, Floor[(n - 1)/2]}], {n, 100}] %o A338117 (PARI) for(n=1,85,my(j=0);forpart(x=n,if(#x==2,if(x[2]!=x[1]&&!(n%(x[2]-x[1])),j++)));print1(j,", ")) \\ _Hugo Pfoertner_, Oct 30 2020 %o A338117 (PARI) A338117(n) = sum(s=1,(n-1)\2,!(n%(n-(2*s)))); \\ _Antti Karttunen_, Dec 12 2021 %Y A338117 Cf. A000005, A001227, A320111. %Y A338117 Cf. also A337101, A338021. %K A338117 nonn,easy %O A338117 1,8 %A A338117 _Wesley Ivan Hurt_, Oct 10 2020