cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338120 a(n) is the least index k such that the n-th odd squarefree number A056911(n) divides A110566(k).

This page as a plain text file.
%I A338120 #22 Jan 30 2021 04:27:33
%S A338120 1,6,20,42,33,156,20,272,342,2058,506,377,930,77,14406,629,162,1640,
%T A338120 559,2162,4624,1166,110,6498,3422,610,342732,4422,506,4970,5256,42,
%U A338120 6162,6806
%N A338120 a(n) is the least index k such that the n-th odd squarefree number A056911(n) divides A110566(k).
%C A338120 According to a theorem proven by Shiu (2016), a(n) exists for all n.
%H A338120 Peter Shiu, <a href="https://arxiv.org/abs/1607.02863">The denominators of harmonic numbers</a>, arXiv:1607.02863 [math.NT], 2016.
%e A338120    n  A056911(n)  a(n) = k          A110566(k)
%e A338120   --  ----------  --------  --------------------------
%e A338120    1       1            1            1 =  1 * 1
%e A338120    2       3            6            3 =  3 * 1
%e A338120    3       5           20           15 =  5 * 3
%e A338120    4       7           42           77 =  7 * 11
%e A338120    5      11           33           11 = 11 * 1
%e A338120    6      13          156           13 = 13 * 1
%e A338120    7      15           20           15 = 15 * 1
%e A338120    8      17          272           17 = 17 * 1
%e A338120    9      19          342          931 = 19 * 49
%e A338120   10      21         2058         1911 = 21 * 91
%e A338120   11      23          506         1725 = 23 * 75
%e A338120   12      29          377          319 = 29 * 11
%e A338120   13      31          930         3751 = 31 * 121
%e A338120   14      33           77           33 = 33 * 1
%e A338120   15      35        14406   2430488445 = 35 * 69442527
%e A338120   16      37          629        20313 = 37 * 549
%e A338120   17      39          162           39 = 39 * 1
%e A338120   18      41         1640         6519 = 41 * 159
%e A338120   19      43          559          645 = 43 * 15
%e A338120   20      47         2162        12831 = 47 * 273
%e A338120   21      51         4624         9537 = 51 * 187
%e A338120   22      53         1166           53 = 53 * 1
%e A338120   23      55          110           55 = 55 * 1
%e A338120   24      57         6498    419498967 = 57 * 7359631
%e A338120   25      59         3422         6431 = 59 * 109
%e A338120   26      61          610        41175 = 61 * 675
%e A338120   27      65       342732       974285 = 65 * 14989
%e A338120   28      67         4422         2211 = 67 * 33
%e A338120   29      69          506         1725 = 69 * 25
%e A338120   30      71         4970         2343 = 71 * 33
%e A338120   31      73         5256         7227 = 73 * 99
%e A338120   32      77           42           77 = 77 * 1
%e A338120   33      79         6162     91801713 = 79 * 1162047
%e A338120   34      83         6806      1200097 = 83 * 14459
%t A338120 max = 64; osf = Select[Range[1, 64, 2], SquareFreeQ]; m = Length[osf]; c = 0; s = Table[0, {m}]; h = 0; lcm = 1; n = 1; While[c < m, h += 1/n; lcm = LCM[lcm, n];  r = lcm/Denominator[h]; Do[If[s[[k]] == 0 && Divisible[r, osf[[k]]], c++; s[[k]] = n], {k, 1, m}]; n++]; s
%Y A338120 Cf. A002805, A003418, A110566, A056911, A112822.
%K A338120 nonn,more
%O A338120 1,2
%A A338120 _Amiram Eldar_, Jan 29 2021