This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338123 #12 Oct 25 2020 14:17:03 %S A338123 3,4,15,19,33,31,63,55,78,82,120,67,162,154,189,175,261,217,327,259, %T A338123 360,370,456,283,534,514,579,523,705,619,807,703,858,874,1008,691, %U A338123 1122,1090,1185,1111,1365,1237,1503,1339,1572,1594,1776,1339,1926,1882,2007,1891 %N A338123 Place three points evenly spaced around a circle, draw n evenly spaced rays from each of the points, a(n) is the number of vertices thus created. See Comments for details. %C A338123 The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. %C A338123 See A338122 for illustrations. %H A338123 Lars Blomberg, <a href="/A338123/b338123.txt">Table of n, a(n) for n = 1..800</a> %F A338123 a(n) = 2160-a(n-4)+a(n-12)+a(n-16)+a(n-60)+a(n-64)-a(n-72)-a(n-76), n>78. (conjectured) %F A338123 From _Lars Blomberg_, Oct 25 2020: (Start) %F A338123 Conjectured for 3 <= n <= 800. %F A338123 Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. %F A338123 +===========================================+ %F A338123 | r | m | a | b | c | d | %F A338123 +-------------------------------------------+ %F A338123 | 5 | 6 | 3 | 10 | 7 | 4 | %F A338123 | 1 | 12 | 3 | 10 | 11 | 4 | %F A338123 | 2, 10 | 12 | 3 | | 28 | 4 | %F A338123 | 3 | 12 | 3 | 4 | 21 | 4 | %F A338123 | 6 | 12 | 3 | -10 | 76 | 4 | %F A338123 | 7 | 12 | 3 | 10 | 35 | 4 | %F A338123 | 9 | 12 | 3 | 4 | 33 | 4 | %F A338123 | 4, 20 | 24 | 3 | -12 | 76 | 4 | %F A338123 | 8, 16 | 24 | 3 | -12 | 124 | 4 | %F A338123 | 0 | 120 | 3 | -40 | -20 | 4 | %F A338123 | 12, 36, 84, 108 | 120 | 3 | -40 | 316 | 4 | %F A338123 | 24, 48, 72, 96 | 120 | 3 | -40 | 364 | 4 | %F A338123 | 60 | 120 | 3 | -40 | -68 | 4 | %F A338123 +===========================================+ (End) %e A338123 For n=1 there are three rays that do not intersect, so a(1)=3. %o A338123 (PARI) %o A338123 a(n)=if( \ %o A338123 n%6==5,(3*n^2 + 10*n + 7)/4, \ %o A338123 n%12==1,(3*n^2 + 10*n + 11)/4, \ %o A338123 n%12==2||n%12==10,(3*n^2 + 28)/4, \ %o A338123 n%12==3,(3*n^2 + 4*n + 21)/4, \ %o A338123 n%12==6,(3*n^2 - 10*n + 76)/4, \ %o A338123 n%12==7,(3*n^2 + 10*n + 35)/4, \ %o A338123 n%12==9,(3*n^2 + 4*n + 33)/4, \ %o A338123 n%24==4||n%24==20,(3*n^2 - 12*n + 76)/4, \ %o A338123 n%24==8||n%24==16,(3*n^2 - 12*n + 124)/4, \ %o A338123 n%120==0,(3*n^2 - 40*n - 20)/4, \ %o A338123 n%120==12||n%120==36||n%120==84||n%120==108,(3*n^2 - 40*n + 316)/4, \ %o A338123 n%120==24||n%120==48||n%120==72||n%120==96,(3*n^2 - 40*n + 364)/4, \ %o A338123 n%120==60,(3*n^2 - 40*n - 68)/4, \ %o A338123 -1); %o A338123 vector(798, n, a(n+2)) %Y A338123 Cf. A338042 (two start points), A338122 (regions), A338124 (edges). %K A338123 nonn %O A338123 1,1 %A A338123 _Lars Blomberg_, Oct 11 2020