This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338124 #13 Oct 25 2020 14:17:10 %S A338124 3,9,24,36,63,60,120,114,150,171,237,138,321,321,375,378,522,456,651, %T A338124 564,717,765,912,606,1068,1059,1158,1116,1413,1284,1614,1482,1716, %U A338124 1791,2019,1470,2247,2229,2373,2322,2736,2544,3009,2796,3147,3249,3558,2802,3858 %N A338124 Place three points evenly spaced around a circle, draw n evenly spaced rays from each of the points, a(n) is the number of edges thus created. See Comments for details. %C A338124 The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. %C A338124 See A338122 for illustrations. %H A338124 Lars Blomberg, <a href="/A338124/b338124.txt">Table of n, a(n) for n = 1..800</a> %F A338124 a(n) = 4320-a(n-4)+a(n-12)+a(n-16)+a(n-60)+a(n-64)-a(n-72)-a(n-76), n>78. (conjectured) %F A338124 From _Lars Blomberg_, Oct 25 2020: (Start) %F A338124 Conjectured for 3 <= n <= 800. %F A338124 Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. %F A338124 +===========================================+ %F A338124 | r | m | a | b | c | d | %F A338124 +-------------------------------------------+ %F A338124 | 1, 5 | 12 | 6 | 21 | -3 | 4 | %F A338124 | 2, 10 | 12 | 3 | 3 | 12 | 2 | %F A338124 | 3 | 12 | 6 | 9 | 15 | 4 | %F A338124 | 6 | 12 | 3 | -6 | 48 | 2 | %F A338124 | 7 | 12 | 6 | 21 | 39 | 4 | %F A338124 | 9 | 12 | 6 | 9 | 33 | 4 | %F A338124 | 11 | 12 | 6 | 21 | -9 | 4 | %F A338124 | 4, 20 | 24 | 3 | -6 | 48 | 2 | %F A338124 | 8, 16 | 24 | 3 | -6 | 84 | 2 | %F A338124 | 0 | 120 | 3 | -33 | -12 | 2 | %F A338124 | 12, 36, 84, 108 | 120 | 3 | -33 | 240 | 2 | %F A338124 | 24, 48, 72, 96 | 120 | 3 | -33 | 276 | 2 | %F A338124 | 60 | 120 | 3 | -33 | -48 | 2 | %F A338124 +===========================================+ (End) %e A338124 For n=1 there are three rays that do not intersect, so a(1)=3. %o A338124 (PARI) %o A338124 a(n)=if( \ %o A338124 n%12==1||n%12==5,(6*n^2 + 21*n - 3)/4, \ %o A338124 n%12==2||n%12==10,(3*n^2 + 3*n + 12)/2, \ %o A338124 n%12==3,(6*n^2 + 9*n + 15)/4, \ %o A338124 n%12==6,(3*n^2 - 6*n + 48)/2, \ %o A338124 n%12==7,(6*n^2 + 21*n + 39)/4, \ %o A338124 n%12==9,(6*n^2 + 9*n + 33)/4, \ %o A338124 n%12==11,(6*n^2 + 21*n - 9)/4, \ %o A338124 n%24==4||n%24==20,(3*n^2 - 6*n + 48)/2, \ %o A338124 n%24==8||n%24==16,(3*n^2 - 6*n + 84)/2, \ %o A338124 n%120==0,(3*n^2 - 33*n - 12)/2, \ %o A338124 n%120==12||n%120==36||n%120==84||n%120==108,(3*n^2 - 33*n + 240)/2, \ %o A338124 n%120==24||n%120==48||n%120==72||n%120==96,(3*n^2 - 33*n + 276)/2, \ %o A338124 n%120==60,(3*n^2 - 33*n - 48)/2, \ %o A338124 -1); %o A338124 vector(798, n, a(n+2)) %Y A338124 Cf. A338043 (two start points), A338122 (regions), A338123 (vertices). %K A338124 nonn %O A338124 1,1 %A A338124 _Lars Blomberg_, Oct 11 2020