cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338133 Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).

This page as a plain text file.
%I A338133 #33 Nov 29 2022 12:53:10
%S A338133 6,20,28,70,945,1575,2205,88,550,3465,5775,7425,8085,12705,104,572,
%T A338133 650,1430,2002,4095,6435,6825,9555,15015,78975,81081,131625,189189,
%U A338133 297297,342225,351351,570375,63126063,99198099,117234117,272,748,1870,2210,5355,8415,8925,11492
%N A338133 Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).
%C A338133 For definitions and further references/links, see A006039, the main entry for primitive nondeficient numbers.
%C A338133 Rows are finite: row n is a subset of the divisors of any of the products formed by multiplying 2^(A035100(n)-1) by a member of the first n finite sets described in the Dickson reference.
%C A338133 Column 1 includes the even perfect numbers.
%C A338133 The largest number in rows 2..n (therefore the largest that is prime(n)-smooth) is A338427(n). - _Peter Munn_, Sep 07 2021
%H A338133 L. E. Dickson, <a href="http://www.jstor.org/stable/2370405">Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors</a>, Amer. J. Math., 35 (1913), 413-426.
%H A338133 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>
%F A338133 A006530(T(n, k)) = A000040(n).
%F A338133 T(n, 1) = A308710(n-1) [provided there is no least deficient number that is not a power of 2, as described in A000079].
%F A338133 For m >= 1, T(A059305(m), 1) = A000668(m) * 2^(A000043(m)-1) = A000668(m) * A061652(m).
%e A338133 Row 1 is empty as there exists no primitive nondeficient number of the form prime(1)^k = 2^k.
%e A338133 Row 2 is (6) as 6 is the only primitive nondeficient number of the form prime(1)^k * prime(2)^m = 2^k * 3^m that is a multiple of prime(2) = 3.
%e A338133 Irregular triangle T(n, k) begins:
%e A338133   n   prime(n)  row n
%e A338133   2      3      6;
%e A338133   3      5      20;
%e A338133   4      7      28, 70, 945, 1575, 2205;
%e A338133   5     11      88, 550, 3465, 5775, 7425, 8085, 12705;
%e A338133   ...
%e A338133 See also the factorization of initial terms below:
%e A338133       6 = 2 * 3,
%e A338133      20 = 2^2 * 5,
%e A338133      28 = 2^2 * 7,
%e A338133      70 = 2 * 5 * 7,
%e A338133     945 = 3^3 * 5 * 7,
%e A338133    1575 = 3^2 * 5^2 * 7,
%e A338133    2205 = 3^2 * 5 * 7^2,
%e A338133      88 = 2^3 * 11,
%e A338133     550 = 2 * 5^2 * 11,
%e A338133    3465 = 3^2 * 5 * 7 * 11,
%e A338133    5775 = 3 * 5^2 * 7 * 11,
%e A338133    7425 = 3^3 * 5^2 * 11,
%e A338133    8085 = 3 * 5 * 7^2 * 11,
%e A338133   12705 = 3 * 5 * 7 * 11^2,
%e A338133     104 = 2^3 * 13,
%e A338133     572 = 2^2 * 11 * 13,
%e A338133     650 = 2 * 5^2 * 13,
%e A338133    1430 = 2 * 5 * 11 * 13,
%e A338133    2002 = 2 * 7 * 11 * 13,
%e A338133    4095 = 3^2 * 5 * 7 * 13,
%e A338133   ...
%o A338133 (PARI) rownupto(n, u) = { my(res = List(), pr = primes(n), e = vector(n, i, logint(u, pr[i]))); vu = vector(n, i, [0, e[i]]); vu[n][1] = 1; forvec(x = vu, c = prod(i = 1, n, pr[i]^x[i]); if(c <= u && isprimitive(c), listput(res, c) ) ); Set(res) }
%o A338133 isprimitive(n) = { my(f = factor(n), c); if(sigma(f) < 2*n, return(0)); for(i = 1, #f~, c = n / f[i,1]; if(sigma(c) >= c * 2, return(0) ) ); 1 }
%o A338133 for(i = 2, 7, print(rownupto(i, 10^9)))
%Y A338133 A000040, A006530 are used to define this sequence.
%Y A338133 Permutation of A006039.
%Y A338133 A047802\{12}, A308710 are subsequences.
%Y A338133 Cf. A000043, A000079, A000668, A035100, A059305, A061652, A338427.
%K A338133 nonn,tabf
%O A338133 2,1
%A A338133 _David A. Corneth_ and _Peter Munn_, Oct 11 2020